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A. Problem Statement 

The purpose of the proposed research was to characterize the n-th order 

cyclostationarity properties of general types of LPI signals and to use the characterizations 

to investigate and develop methods for both secure communication and interception. For 

secure communication, this includes means for reduction of strength of, and elimination of, 

cyclic features that could be exploited by an interceptor. Signal design for LPI 

communication was to be considered from the viewpoints of both the communicator's 

reception task and the interceptor's reception task. For interception, the characterizations 

were to be used to propose feature sets and discrimination rules for signal classification and 

identification. The basic approach to characterizing n-th order cyclostationarity properties 

of signals was to be extended and generalized from the recently developed theory of 2nd- 

order cyclostationarity, in which spectral characterizations play a crucial role. 



B.   Summary of Results 

I. Fundamental Theory 

In [1, 2, 3], the fundamental theory of higher-order cyclostationarity is presented, and some 

applications of the theory are discussed. The theory is an extension of the theory of second- 

order cyclostationarity, which analyzes the polyperiodic components of quadratic transforma- 

tions of random time-series, to nth-order cyclostationarity, which analyzes the polyperiodic 

components of nth-order transformations of random time-series. The central parameters of 

the theory are nth-order moments and cumulants of both the time-series itself (time domain 

or temporal) and of finite-time Fourier transforms of the time-series (frequency-domain or 

spectral). Unlike all other work on cumulants, in which the cumulant is used because it has 

some well-known useful properties, we have shown that cumulants arise as the solution to 

a specific problem that is central to the study of higher-order cyclostationarity. That is, 

we have shown that each Fourier component of the 7ith-order temporal cumulant function 

(called a cyclic cumulant) for a random polycyclostationary time-series can be derived as the 

solution to the problem of calculating the part of a sine wave, which is generated by applying 

an nth-order homogeneous polynomial nonlinearity to the time-series, that excludes contri- 

butions that are due to the multiplication of sine waves that are generated by the lower-order 

factors in the homogeneous polynomial. In addition, Part I of the papers [2, 3] contains a 

detailed history of the cumulant from its inception in the late nineteenth century up to the 

present. The papers [2, 3] also contain results on the effect on the theory's central parame- 

ters of certain signal-processing operations that are performed on the time-series in question, 

including signal addition, signal multiplication, convolution, and periodic sampling. Meth- 

ods for measurement of the central parameters are presented, analyzed mathematically, and 

evaluated by computer simulation. The book chapter [4] presents a tutorial treatment of 

much of the work presented in [1, 2, 3]. 

II. Theory and Method for Measurement of Cyclic Statistics 

In the two conference papers [5] and [6], the measurement of the frequency-domain cumu- 



lants, known as cyclic polyspectra, is considered. Much of the material in the first paper, 

[5], appears in the later publications [1, 2, 3], but the material in [6] has not been pub- 

lished in any other place. In [5], three methods of estimating the cyclic polyspectrum are 

presented and shown to converge to the correct theoretical functions when the data record 

length first increases without bound, and then the spectral resolution-width parameter is 

allowed to approach zero. The correctness of the methods for finite data-record lengths and 

spectral resolution-widths is verified by computer simulation. It is also shown that the three 

measurement methods reduce to well-known spectral estimation methods for order two and 

a cycle frequency of zero. In [6], a source of measurement error that is particular to the mea- 

surement of cyclic polyspectra, as opposed to polyspectra, which are the spectral cumulants 

for nth-order stationary time-series, is studied. This source of error is called leakage from 

submanifolds, and results from the presence of lower-order cyclic features. Leakage from 

submanifolds is the generalization to higher orders of the spectral leakage phenomenon that 

occurs in spectrum estimation when the data contains sine-wave components (when the ideal 

spectrum contains impulses). The leakage phenomenon is studied both analytically and by 

computer simulation (the latter only for n = 4). 

III. Algorithms for TDOA Estimation 

In [7, 8], the problem of estimating the time difference of arrival (TDOA) between the 

components of a signal that is received at two spatially separated sensors is studied for 

the case in which the signal does not exhibit sufficiently strong (exploitable) second-order 

cyclostationarity and is subject to cochannel interference and time-varying background noise. 

This can happen, for example, when the signal is a bandwidth-efficient communication signal 

or when it is a member of a class of low-probability-of-intercept signals. In [7, 8], work, a class 

of TDOA estimators is derived to solve the stated problem. This class of estimators is based 

on matching measurements of sets of nth-order cross cyclic cumulants in a least-squares 

sense. For n = 2, two of the estimators in the class reduce to known cyclostationarity- 

exploiting TDOA estimators (SPECCOA and CPD). The nth-order version of CPD has 

been implemented in software, but simulations aimed at characterizing its performance have 

not been completed. 

IV. A Method for Waveform Extraction 



In [9], the theory of higher-order cyclostationarity is applied to the problem of estimating a 

signal waveform in the presence of cochannel interference and noise from data obtained from 

a single sensor. In particular, the signal of interest can be completely spectrally and tempo- 

rally overlapped by the interferes. If the signal exhibits strong second-order cyclostation- 

arity, then linear frequency-shift filtering can be used to perform this waveform estimation. 

If the interferers also exhibit strong second-order cyclostationarity, then the quality of the 

waveform estimate can be improved by exploiting this cyclostationarity in addition to that 

of the signal of interest. However, for the case in which the signal and interferers do not ex- 

hibit sufficient second-order cyclostationarity, but do exhibit higher-order cyclostationarity, 

nonlinear frequency-shift filtering can be used to perform the waveform estimation. 

In [9], a nonlinear frequency-shift filter consisting of a linear part and a cubic part is 

studied mathematically and by computer simulation. The mathematical analysis consists 

of deriving the minimum-mean-squared-error (MMSE) design equations for estimating a 

signal waveform contained in an arbitrary data record. The derived integral equations are 

complicated and have not yet been solved. The form of the equations can yield information 

that helps to specify the frequency shifts to be used in both the linear and cubic parts of 

the system. Such a system was implemented in software and simulations were performed 

to assess the potential of the method. In particular, it was desired to determine if there 

was enough potential for solving problems of practical interest to merit numerical evaluation 

of the MMSE design equations. The simulations performed to date show that, for a small 

number of frequency shifts and a small number of cubic transformations, the reduction in 

mean-squared error (with respect to linear time-invariant filtering) is about 50%. However, 

for the signal environments chosen, there is simply no known viable alternative for waveform 

estimation. Because the method appears to have some potential, it is recommended that 

further research be carried out on nonlinear frequency-shift filtering. 

V. LPI Signal Design 

In [10], the challenging problem of designing a low-probability-of-intercept (LPI) or, more 

accurately, a covert digital communication signal is tackled using the theory of higher-order 

cyclostationarity. The design philosophy is as follows. Signals are normally detected based on 

their observable characteristics, such as power level, center frequency, bandwidth, temporal 



structure, etc. When these obvious features are hidden by a signal designer, as is the case 

with, for example, direct-sequence spread-spectrum signals, other features of the signal must 

be used to perform detection. A useful class of features are those periodic components 

that can be found in the outputs of nonlinear transformations of the signal. Examples 

of these are symbol rates, chip rates, and doubled carrier frequencies. The interceptor 

nonlinearly transforms the received signal and attempts to detect these periodic components 

in order to detect the presence of the hidden signal. Thus, the signal designer must take 

this interception strategy into account. He must design his covert signal such that no useful 

periodic components can be generated by a specified class of nonlinear transformations for 

a given data-record length. Our LPI signal design starts at this point. 

We attempt to design a digital communication signal such that, ideally, no finite-strength 

additive sine-wave components (with nonzero frequency) can be generated using nonlineari- 

ties of order TV or less. (The ability to generate sine-wave components with zero frequencies 

cannot be avoided, but this does not destroy the covertness of a signal either.) To minimize 

the detectability of these sine waves, the digital communication signal is chosen to be a 

spread-spectrum signal and is, therefore, hidden in the much stronger noise. The theory of 

second-order cyclostationary signals is sufficient to solve the remaining problem if N is less 

than or equal to three, but for larger N, the theory of higher-order cyclostationarity must be 

used. This latter theory completely characterizes all the finite-strength additive sine-wave 

components that can be generated by nonlinear transformation in terms of cyclic cumulants. 

We have found that the cyclic cumulants of digital QAM signals are equal to the product 

of the cumulant of the symbol variable with a nonlinear function of the complex envelope of 

the pulse. 

To minimize the second-order cyclic cumulants of digital spread-spectrum QAM signals, 

the chip envelope cannot be the standard rectangular pulse. A zero-percent excess-bandwidth 

pulse, such as that used in partial-response signaling, can be used to eliminate all second- 

order features associated with the chip rate. 

To minimize the second-order features associated with the carrier frequency, and all 

higher-order features, the signal constellation must be appropriately designed. This neces- 

sitates a departure from the standard ±1 chip alphabet.   These considerations result in a 



cumulant-minimization problem that involves a set of nonlinear equality constraints on the 

chip alphabet and associated probabilities. Alternatively, the design problem can be cast in 

the form of a large system of nonlinear equations resulting from setting all the undesirable 

sine-wave strengths equal to zero, but further research is needed to determine if any exact 

solutions to these nonlinear equations exist. 

In our work to date, we have developed numerical methods for solving the minimization 

problem described above. These numerical methods have been used to design covert/LPI 

signals with very small second-, third-, and fourth-order cyclic cumulants. Because of the 

relationships between moments and cumulants, the corresponding cyclic moments up to order 

four are also very small. As an example, a 16-QAM signal employing partial-response pulse- 

shaping has been designed for which the two largest sine-wave strengths for nonlinearities 

with orders four and less are 17.4 dB and 28.6 dB below the power level, although the 

strengths of most of the regeneratable sine waves are more than 30 dB below the power 

level. By comparison, for BPSK signals, the largest sine-wave strength is 6 dB above the 

power level, and for 16-QAM with the conventional square constellation and rectangular 

pulses, the two largest are 3.3 dB and 7.9 dB below the power level. 

VI. Cochannel Signal Detection 

In [11], the problem of determining the number of cyclostationary signals present (if any) in a 

given data record is addressed. The particular scenario of interest is that for which the signals 

are temporally and spectrally overlapping. Lack of prior knowledge, including the number 

of signals present, prohibits detection based on radiometry (detection of energy in certain 

spectral bands), and the possible presence of signals that do not exhibit strong second-order 

cyclostationarity rules out conventional cycle detectors. However, an algorithm for blindly 

estimating cyclic cumulants has been developed to solve this problem. This algorithm is 

called the general search algorithm. (GSA), and its function is to produce estimates of the 

cyclic cumulants and their associated cycle frequencies of the given data for orders 1 through 

A, where N is specified by the user of the algorithm. 

The output of the GSA consists of a set of estimates of cyclic cumulants and the associated 

cycle frequencies for each order of processing. However, this list of numbers is not enough to 

determine the number of signals that are present (which give rise to the cyclic cumulants). 



To do this, the cyclic cumulant/cycle frequency pair estimates need to be grouped together 

such that each group corresponds to a single signal in the data. The grouping algorithm (GA) 

performs this task. The GA has been implemented for the case of signals of the digital QAM 

variety, but can be extended to include classes of signals for which formulas for the temporal 

cumulants are known. In [11], the GSA and GA are described and their performance is 

illustrated with simulations. This work, while in an early stage of research and development, 

is very promising and merits further research. 

VII. Cochannel Modulation Identification 

In [12], the GSA and GA algorithms are used to not only detect any cyclostationary signals 

present in a given data record, but to identify their modulation types as well. A catalog of 

feature vectors obtained by applying the GSA/GA tandem to a variety of noiseless simulated 

signals is obtained. This catalog reveals that signals with identical second-order cyclic fea- 

tures can have radically different higher-order cyclic features provided the order N is chosen 

large enough. For example, QPSK and 8PSK have identical second-order cyclic features, but 

have distinct fourth-order cyclic features (QPSK has features related to the carrier frequency 

for order four, whereas 8PSK does not). To distinguish between 8PSK and 16PSK requires 

N = 8. The features are useful because they can be estimated for each signal in the data 

(in principle) regardless of the amount of spectral overlap. An algorithm for identifying the 

modulation type of a signal given a measured feature has been devised but has not been 

thoroughly tested. This algorithm measures the distance between the measured feature and 

each feature in a set of candidate-signal features and chooses the modulation type that gives 

rise to the feature with minimum distance. 

VIII. Nonlinear System Identification 

In [13], the problem of identifying the kernels of a nonlinear Volterra system is studied. A 

new approach to obtaining sets of operators that are orthogonal to the Volterra operators for 

a class of input time-series is developed. It is shown how these orthogonal operators can be 

used in a crosscorrelation-based method to identify the Volterra kernels of nonlinear time- 

invariant systems. This class of inputs includes both Gaussian and finite-state (e.g., PSK) 

time-series, and simulations suggest that methods used with the finite-state inputs converge 

considerably more rapidly than the methods used with Gaussian inputs, which includes as 

7 



a special case the method of Wiener, Lee, and Schetzen. 

For complex-valued inputs, the new methods are believed to be the only crosscorrelation- 

based methods known that identify arbitrary order Volterra kernels of an infinite-order sys- 

tem (with infinite memory). Such methods can be used to compute the Volterra kernels of 

nonlinear systems that can be simulated on a computer. 

The computational efficiency of these new crosscorrelation-based methods can be in- 

creased by using an FFT algorithm to implement the frequency-domain counterparts devel- 

oped in this project that are based on frequency-smoothed cross-spectra. 

IX. Polyperiodic Nonlinear System Identification 

In [14], the class of polyperiodic nonlinear (PPN) systems that admit a new double series 

representation, called the Fourier-Volterra series, is considered, and a class of cyclostationary 

random inputs that enables the analytical specification of sets of operators on the input that 

are orthonormal over all time to the Fourier-Volterra operators are defined. The reciprocal 

operators are used to obtain a crosscorrelation formula for identifying the Fourier-Volterra 

kernels of PPN systems. It is shown how the orthonormal operators for the finite-state 

phase-modulated and Gaussian amplitude-modulated inputs can be determined. The finite- 

state inputs are expected to result in computationally attractive identification relative to 

the computational load required for Gaussian inputs because of the substantially longer 

averaging times that are apparently required by the latter. Nevertheless, the computational 

load for the former can be very substantial not only because of the averaging time required, 

but also because of the number of terms required in the double series representation. Some 

reduction in the computational load of the crosscorrelation method can be achieved by 

using an FFT algorithm to implement its frequency-domain counterpart, which is based on 

frequency-smoothed cyclic cross-periodograms, and which was developed in this project. 
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Abstract 

Effective methods of signal interception for signals that are hidden in noise include 
those that are based on exploiting second-order cyclostationarity. The exploitability 
of second-order cyclostationarity for interception purposes can be measured by the 
peak strength of the sine-wave components that appear when the signal is subjected to 
certain quadratic nonlinearities. To counter such cyclostationarity-based interception, 
signals can be designed to yield quadratically regeneratable sine waves with small 
strengths. Thus, interceptors are forced to use other means to intercept such signals. 
One class of interception methods for these LPI signals is based on the exploitability 
of higher-order (order larger than two) cyclostationarity. For this interception to be 
effective, the peak strengths of the sine-wave components in the output of higher-order 
nonlinearities must be large enough to detect. The signal designers are then forced to 
minimize these strengths. In this work, digital QAM signals with minimum second-, 
third-, and fourth-order cyclostationarity are designed using a combination of pulse- 
shaping and amplitude/phase constellation design based on the newly developed theory 
of higher-order cyclostationarity. 

1    Introduction 

A substantial amount of recent research work on signal interception has focussed on exploit- 
ing the cyclostationary nature of digital communication signals, such as pulse-amplitude 
modulation (PAM), phase-shift keying (PSK), quadrature-amplitude modulation (QAM), 
direct-sequence spread-spectrum signals, and, to a lesser degree, frequency modulation, 
frequency-shift keying, and frequency-hopped spread-spectrum signals [5]-[9]. The key to 
such interception is the ability to generate a sine wave (or set of sine waves) by nonlinearly 
transforming the signal, and then detecting the presence of this regenerated sine wave. This 
interception can be accomplished even when the background noise and interference is very 
strong provided that enough data is available [1]. Thus, the degree of detectability of a cyclo- 
stationary signal can be measured in terms of the strength of its cyclostationarity, which can 
be defined in terms of the strengths of its regeneratable sine waves for a fixed signal-power 

level [6]. 
These interception considerations have necessarily had an impact on the design of low- 

probability-of-intercept (LPI) signals.   In particular, it is desirable to limit the amount of 
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cyclostationarity that can be exploited by the interceptor, while simultaneously allowing 
the communicator to detect and demodulate the signal by using a receiver with reasonable 
complexity. Thus, it is desired to minimize the strengths of the regeneratable sine waves, 
but because regenerated sine waves are often used (explicitly or implicitly) by the intended 
receiver to synchronize to the signal, this is not just a simple minimization problem; there is 
a tradeoff between probability of intercept and difficulty of reception for the intended com- 

municator. Nevertheless, in this report the focus is on the minimization problem without 

regard to the resulting complications for the intended communicator. The idea is to deter- 
mine the limits on what can be done by using the proposed approach, and then to evaluate 

the difficulty of reception of the designed signals. 
One way to minimize the strength of regeneratable sine waves that applies to the class 

of digital QAM signals is through pulse-shaping. That is, since digital QAM signals (at 
radio frequency) can be represented by complex-valued PAM signals (at baseband), then 
their spectral correlation functions are easily characterized in terms of the baseband pulse 
transform [1]. The support of this transform determines the number of regeneratable sine 
waves as well as their strengths. By bandlimiting the pulse transform to the Nyquist band 
(where the positive-frequency bandwidth of the pulse is equal to half the pulse rate), the 
second-order cyclostationarity of the signal that is associated with the pulse rate is annihi- 
lated [1]. The radio frequency signal can still exhibit cyclostationarity associated with the 
carrier if the symbol constellation (discrete support of the probability mass function of the 
complex-valued random symbols) does not meet certain symmetry requirements. 

Pulse-shaping can be used to reduce the exploitable second-order cyclostationarity of a 
signal, but it is less effective at reducing the exploitable higher-order cyclostationarity of the 
signal. The positive-frequency bandwidth of the pulse transform would need to be reduced to 
1/n times the pulse rate (or, more generally, the support of the pulse transform would have to 
be limited in some other way) in order to annihilate the ?2th-order regeneratable sine waves, 
which—for n = 2—would introduce an unacceptable amount of intersymbol interference to 
the transmitted signal, thus foiling the intended receiver. However, the symbol constellation 
itself can be designed to minimize the strength of the nth-order regeneratable sine waves. 
This is a result of the fact that the strengths of the pure nth-order sine waves [4] for a 
given digital QAM signal are directly proportional to the nth-order cumulant of the symbol 
constellation. 

This report discusses the problem of minimizing the nth-order cumulants of discrete 
random variables by designing their probability mass functions for the purpose of design- 
ing signal constellations and associated probabilities for a digital QAM (DQAM) signaling 
scheme. The cumulant-minimization problem is also interesting from a mathematical view- 
point because it can be thought of as an attempt to find a small-alphabet discrete random 
variable that has a PDF that is, in some suitable sense, a good approximation to the con- 
tinuous Gaussian probability density function (PDF). This follows because the higher-order 
cumulants for Gaussian random variables are all zero. In fact, this observation is the basis 
for one of the numerical methods described in this report. 

In the following, the cumulants (and moments) of digital QAM signals are presented, and 
then the minimization problem is stated and explored analytically. Numerical approaches to 
this minimization problem are described, and some results are provided and discussed. The 
reader of this report is assumed to be familiar with higher-order statistics in general, and 



with higher-order cyclostationarity in particular [4]. 

2    Moments and Cumulants of PAM Signals 

The class of signals considered herein is specified by 

s{t) = 9t\   £ {Cm        2SmJ p{t + mT0 + to)ei2^ \ , (1) 

where 9?{-} is the real-part operator, fc is the carrier frequency, 8C is the carrier phase, T0 

is the pulse interval length, t0 is the pulse timing constant, and cm and sm are real-valued 
independent symbol variables that take on values in some finite set. The analytic-signal 

representation of s(t) is denoted by sa(t), and is given by 

*.(*)= E 
m=—oo  L 

~\C-m        ISm) p(t + mT0 + t0)e
l27rf<\ (2) 

and the complex envelope of the DQAM signal s(t) is denoted by sc(t): 

s(0 =   E 
m = ~~ oo 

CO 

" \Cm '"^m/ pit + mT0 + t0), 

=      E   a"^ + mT° + *°)' (3) 

which is a complex-valued PAM signal. This signal model includes PSK, Mary-QAM, and 
(more generally) amplitude-and-phase-shift-keying (APK) modulations. 

The cumulants of a complex PAM signal sc(t) with independent and identically dis- 
tributed symbols are given by [4] 

CSc(t,r)n    =     Cumulant{5W>(< + ri)K=1 

^a,n      / ^ 
771=: — CO 

flp^it + mTo + Tj+to) 
i=i 

(4) 

where (*)j denotes optional conjugation of the jth element in the set {s*  (t + Tj)}]=i, and 
Ca,n is the nth-order cumulant of the symbol sequence {am}, and is given by 

c    =  v *~■ a,n     —        / j 

Pn 3 = 1 

(5) 

in which 

Ra lim 
1 

K-tao IK + k=-K 
n ,(*)« 

(6) 



and Pn is the set of all distinct partitions {uu ■ ■ -,up} of the set of indices {1,2, • ■ • ,ra}, and p 
is the size of the partition (1 < p < n) [2]. The reduced-dimension cyclic temporal cumulant 
function (RD-CTCF) and cyclic polyspectrum (CP) follow directly from (4): 

C;c(u)n   =   %*/    pW-(i)UpWi(/ + Ui)c-ö^dteö^)   ß = k/T(h (7) 
iO    J-co j-i 

P"(f%   =   ^B^l'/lin^'B/i)^.   0 = */To,        (8) 
To J=I 

where P(f) is the Fourier transform of p(t). Thus, the nth-order temporal and spectral 
cumulants of the PAM signal are directly proportional to the nth-order cumulant of the 

symbol variable. 
The cyclic temporal moment functions (CTMFs) of the PAM signal sc(t) can be found 

by combining the cumulants of sc(t) in the following alternative ways [4]: 

K(r)n   =   C:c(r)n + Y: 
Pn 

p?l 

c:c(r)n - £ 
Pn 

P54l 

E n^K), 

(-irHp-iy. E n^KK 

(9) 

(10) 

where a and■ ß are vectors of impure and pure cycle frequencies, respectively [4]. These 
expressions are complicated for n > 3, and no simplifications have been found. Clearly, the 
cyclic moment is not generally easy to compute, and it is obviously not proportional to the 
moment of the symbol variable Äa,„ in general. Nevertheless, for the case in which p(-) has 
width less than or equal to T0, and TJ = u for all j, the CTMF is given by 

#s»n IIP
W> (t + u)e-^at dt e i2Ttato 

for a = k/T0. Unfortunately, for rectangular pulses this particular CTMF is zero for k =fi 0 
(but it is nonzero for other r). In general, then, it is difficult to relate the CTMF, which 
is the strength of a sine-wave component of an nth-order lag product, to the probabilistic 
parameters of the signal constellation for arbitrary n and r, whereas it is easy to relate 
the CTCF, which is the strength of a pure nth-order sine wave component in an nth-order 
lag product, to these parameters. However, if there is no lower-order cyclostationarity, 
then R° (r)n = C° (T)„, and the strength of the pure nth-order sine wave is equal to the 
strength of the impure nth-order sine wave. Thus, in this latter case, both strengths are 
directly proportional to Ca,n- The most common example of this is the case of n = 4 and 
0% excess-bandwidth pulses (for example, partial response signals [3], of which duobinary 
signals are an example). For higher orders, it is much less likely that there will be no lower- 
order cyclostationarity and, therefore, the impure nth-order sine waves are more difficult to 
analyze. Nevertheless, we shall discover that designing a signal to exhibit minimum second- 



and fourth-order cyclic cumulants results in a signal that has small second- and fourth-order 
cyclic moments as well. 

In general, cyclic cumulants are signal selective and tolerant to Gaussian corruption, 
whereas cyclic moments are not [2, 4]. In addition, by inspection of the tables to be pre- 
sented, the cumulants of the signal constellation get very large with increasing n whereas the 
moments do not (for a fixed constellation variance). Thus, an interceptor might be wise to 
compute cumulants instead of moments, and an LPI signal designer might be wise to focus 
on minimizing the exploitability of cumulants rather than moments. All these considerations 
lead us to focus on the cumulants of the signal constellation, rather than the moments. 

3 Moments and Cumulants of Symbol Constellations 

To better understand the nature of the cumulants and moments of the complex PAM signal 

sc(t), the values of Ca,n and 7?a?n corresponding to some simple DQAM signals are presented 
in this section. The values of am (the signal constellation and associated probabilities) for 
6C = 0 for BPSK, 4-level PAM, QPSK, 8PSK, 16PSK, 32PSK, 64PSK, 4QAM, 8QAM, 
16QAM, and 64QAM signal types are tabulated in Table 1. The constellations are scaled so 
that their variance is equal to one. 

For a few distributions of am (constellations), the ?zth-order cumulants can be computed 
analytically, but the resulting expressions always contain a number (a function of n) that can 

only be computed by means of a recursion or an infinite series. The values of moments and 
cumulants given in the tables herein were computed using a computer program written in C, 
and are shown in Tables 2, 3, and 4. This program can compute the nth-order moments and 
cumulants of any finite-alphabet random variable. The results for the analytically tractable 
cases match the corresponding results in the tables. Several analytical results concerning the 
cumulants of discrete random variables are given in Section 5. These moments and cumulants 
also indicate the relative strengths of the regeneratable sine waves for the various signal types 
that are listed. For example, the cumulants of BPSK grow most rapidly with the order n, 
indicating that this signal is the most detectable of those listed in the tables: in some sense 
the ±1 binary random variable is the opposite of the Gaussian random variable. We have 
found no other random variable with larger cumulants. This observation is consistent with 
the fact that BPSK signal also exhibits the strongest second-order cyclostationarity of any 
known modulated signal. 

4 Cycle Frequencies of Digital QAM Signals 

From (7) and (8), the cycle frequencies of the complex-valued PAM signal (the complex 
envelope of the DQAM signal) are restricted to harmonics of the pulse rate 1/T0, and the 
width of the Fourier transform of the pulse function p(t) determines the number of such 
harmonics that result in nonzero values of C^c(-)n. We'll not concern ourselves with the 
latter detail for now. We simply find the cycle frequencies for the analytic signal assuming 
that the complex envelope exhibits cyclostationarity at all harmonics of the pulse rate. This 
is the case, for example, when the function p(t) is a rectangle with width T0 because in this 



case the Fourier transform P(f) has infinite width. These results can be easily modified if 
the width (support) of P(-) is finite: there will be an upper limit to k in \k\/T0 beyond which 
all cyclic cumulants are zero. 

The cycle frequencies for the complex envelope for a particular modulation type can be 
determined by using the tables of values for the cumulants Ca,n. When Ca,n = 0, there are no 
cycle frequencies (because there are no features), and when Ca,n / 0, the cycle frequencies 

are simply the harmonics of the pulse rate. 
Let A™ denote the cycle frequencies of the complex envelope sc(t) for order n with m 

factors conjugated. It can be shown by using results in [2] that the cycle frequency set B™ 
for the analytic signal is given by 

Bl 
{a:a = 1 + (n-2m)fc, 7e^},     A™ + 0, 

0, otherwise. 

The cycle frequencies for the analytic-signal representations of some common digital com- 

munication signals are shown in Table 5. 

5     Cumulants of Certain Discrete Random Variables 

The cumulants of certain discrete random variables can be obtained by using the definition of 
the cumulant as the derivative of the logarithm of the characteristic function of the variable, 

say, A: 

CA,n=(i)-n-^ln$(iü)       . 

Consider a binary symmetric real-valued random variable A with PDF 

fA{u) = -[S(u + a) + 5(u-a)}. 

The characteristic function for A is 

$A(U) = cos(cjß), 

and the nth-order cumulant is given by 

Qn 
CA,U   =    (?)-

n7—ln<M^) 

(0_n 

du" 
Qn-1 

w=0 

-as'm(uia) 

ctan_1      cos{ua) 
Qn-1 

=    —a(i)  n— -tan(cja) 

u/=0 

i>=0 

Since 
oo        I      ■\\m — \ri2m(r\2m        i\D 



where Bm is the mth Bernoulli number, 

oo      r>        m * =£*m*_ (n) 
e l m=0      '"- 

the nth-order cumulant for A is zero for odd n, and for even n it simplifies to 

= a"r(r-i)B„ (12) 
n 

Next, consider a quaternary symmetric variable with density function 

fA{u) = l-[8{u + a) + 8(u -a) + 5(u + b) + 6{u - &)]. 

The characteristic function for A is 

$4(0;) = -[cos(wa) + cos(u;6)]. 

By using a trigonometric identity, the log-characteristic function can be expressed as 

In $4(0;) = lncos(u;[a + 6]/2) + lncos(u;[a - b}/2). 

It follows that the cumulant for A is given by 

CA,n = [(a + b)n + (a- b)n] Bn{2n
n'
l\ (13) 

for even values of n, and is equal to zero for odd values of n. By looking up the values of 
the Bernoulli numbers, the values listed in Table 2 (for BPSK and 4-level PAM), which are 
obtained by numerical evaluation, can be confirmed1. 

6    Minimizing Cumulants 

The cumulants of a binary symmetric random variable (12) are nonnegative and therefore 
their minima must correspond to the symbol values of a — — a = 0 (cf. (12)). Similarly, 
for the quaternary symmetric variable, the minimum cumulant (13) for each n corresponds 
to a = b = 0. However, if we incorporate the constraint that the variance of the variable 
must equal some constant, say 1, then it is not clear that there is no useful minimum. For 
example, for the symmetric quaternary random variable, if the variance is equal to 1, then 
the extrema of the fourth-order cumulant are given by the solutions to the following two 
equations 

(a ± v/2^)3(l T -=L=) + (a T v/2~^)3(l ± -^==) = 0. 
v/2^2;     v ' y       \/2" a 2- 

These equations are satisfied when a = ±1, and a = 0.   The former two solutions result 
in the random variables a\ = 1, b\ = — 1 with probabilities of 0.5, and the latter solution 

1The first several Bernoulli numbers are given by B2 = 1/6, B4 = -1/30, B6 = 1/42, B8 = -1/30. 



results in the random variable ax = 0,&i = y/2,b2 = — \/2 with probabilities 0.5, 0.25, and 
0.25, respectively. The fourth-order cumulant of the former random variable is given by (12) 
with n = 4 and a = 1 (which equals —2), and that for the latter random variable is given by 

2v/24g4(2
4 - 1) _ 

4 

These two random variables are not particularly useful because the associated DQAM signals 
still have relatively strong fourth-order cyclostationarity. It follows, then, that to obtain 
meaningful results from a minimization procedure, we must remove some of our constraints 
on the random variable distribution, that is, we must consider asymmetric random variables 
and/or those with unequal probabilities. In the case of the quaternary symmetric random 
variable, we might consider instead a quaternary equiprobable random variable with four 
arbitrary values, or we can allow the probabilities to deviate from 0.25, or both. In these 
cases, the resulting formulas for the cumulants are difficult to analyze, and we must resort 
to numerical methods. 

In general, for a constellation with M real-valued symbols, the formula for Ca,n is an 
nth-order polynomial in 2M variables (although one of the probability variables can be 
eliminated). Therefore, to minimize \Ca,n\ requires the simultaneous solution of 2M poly- 
nomial equations, with maximum order n. As seen from the example above, additional 
constraints (such as unit variance) must be incorporated for the results to be meaningful. 
Because of the large number of variables and the nonlinear nature of the equations, this 
problem appears to be generally too difficult to solve analytically, and so numerical methods 
must be used. 

7    Constraints for Complex Symbols 

In general, we consider the problem of finding a four-symbol signal constellation with mini- 
mum the fourth-order cumulant subject to the following constraints on the symbol variable: 

1. Zero mean 

2. Unit variance 

3. No two symbols are the same (unique symbols) 

4. No symbol has zero probability 

5. Certain second-, third-, and fourth-order moments are zero. 

The signal-design considerations that lead to these constraints are explained in detail next. 
In order for the designed DQAM signal to be useful, the mean of the constellation must 

be zero for power efficiency. To compare the cumulants of the candidate constellations, it 
is necessary to normalize them somehow. The normalization chosen is unit variance. This 
constraint is important because the cumulants can be made very small (i.e., zero) by setting 
all the symbols to zero, and this trivial solution must be avoided. In order for the designed 
DQAM signal to be useful, the symbols must be unique, no symbol can have zero probability, 



and the symbol magnitude cannot exceed some constant. If a symbol has zero probability, 
the constellation has fewer than the desired number of elements, that is, the bits can be 
coded with fewer than the specified number of symbols. The problem of finding a minimum 
cumulant for this smaller constellation size is deemed a distinct problem. If the symbols 
are not unique, then again we have a smaller-size constellation. Finally, the bound on the 
symbol magnitude is necessary to bound the dynamic range of the resultant DQAM signal. 

Let {dj}jLi denote the complex-valued symbols of the complex-envelope signal repre- 
sentation of the passband signal. Symbol a,j occurs with probability pj. The foregoing 
constraints can be expressed mathematically as follows: 

M 

E<w = o, (14) 

M 

EKI2Pi = i, (is) 

0 < \a.j\ <K,     1<J< M, (16) 

l<Pj<e2,    l<j<M. (17) 

The remaining constraints follow from forcing the carrier-related cyclic cumulant features 
for orders two, three, and four to zero, and then finding the constellation that minimizes the 
fourth-order symbol-rate features by minimizing the appropriate fourth-order cumulant. 

The second-order cyclostationarity (SOCS) that is associated with the symbol-rate cycle 
frequencies vanishes because the pulse is assumed to have positive-frequency bandwidth less 
than or equal to half the pulse rate. The SOCS that is associated with the carrier frequency 
vanishes if the second-order cumulant of the symbol variable with no conjugations is zero, 
which leads to the fifth constraint: 

M 

Ca,3 = EfliW  = °- (18) 
i=i 

Equation (18) follows from (14); that is, the second-order cumulant is equal to the second- 
order moment if the mean is zero. Constraint (18) implies that the second-order cumulant 
with both factors conjugated (C^2) iS a'so zero. Notice that the notation Cq

av is used to 
denote the pth-order cumulant of a with q conjugated factors. 

The third-order features are forced to zero in a similar manner. Because the third-order 
cumulants of the symbol variable are equal to the third-order moments with certain products 
of lower-order moments subtracted off (each of which contains at least one occurrence of the 
mean), the two constraints on the third-order cumulants reduce to the following: 

M 

ca°,3 = (C7fl%r = EfliW = o. (19) 

M 

^,3=(Ca,3r = E«i^ = 0. . (20) 
J=l 



Similarly, the carrier-related fourth-order cyclic cumulant features, which occur for 0, 1, 
3, and 4 conjugated factors are forced to zero by the following two constraints: 

M 

ca°,4 = (c^r = 5>ifc = o, (21) 

M 

Q\4 = (CM)* = E'ftft = 0- (22) 
i=i 

If all these constraints are met, then the remaining cyclostationarity of order four or less can 
only occur for order four with two conjugated factors, which is cyclostationarity associated 
with the pulse rate. The goal of the numerical processing is to find the symbols and associated 
probabilities that meet the constraints (14)-(22) and minimize the fourth-order cumulant 
that is associated with the symbol-rate cyclic features: 

M M 

r2 
°a,4 

V^ 1      14 
= 2Jail PJ- -2 EK 

3=1 i=i 
P3 (23) 

8    Constraints for Real Symbols 

As with complex symbols, the constraints on real symbols can be determined by remembering 
that the symbols correspond to a PAM signal that multiplies a complex-valued carrier wave. 
It is desired to eliminate the cyclostationarity of the modulated signal. This can be done by 
minimizing the first-, third-, and fourth-order cumulants of the PAM signal by minimizing 
the cumulants of the symbol variable. Constraints (14)—(17) apply unchanged. The SOCS 
associated with the doubled-carrier frequency cannot be eliminated from the signal without 
forcing the power or bandwidth to zero. The third-order cyclostationarity is destroyed by 
constraint (19). The objective is to minimize the fourth-order cumulant of the symbol 
variable: 

M 

CaA = J2 OjPj ~ 3 

i=i 

M 

3=1 

subject to (14)-(17) and (19). 

9    Digital QAM Signals From Real Random Variables 

Although the real-valued distributions obtained by meeting the constraints described in the 
previous section cannot directly be used to construct a complex-valued digital QAM signal 
with small second-, third-, and fourth-order cyclic features, they can be used indirectly to 
do so, that is, the resulting signal has a complex-valued PAM representation that meets the 
constraints of Section 7, with the single exception of (21). Nevertheless, the cumulant C°4 

is made as small as the cumulant that is minimized (C^2), as explained next. 
Let b and c be independent and identically distributed real-valued random variables that 

meet the constraints of the previous section, and let these random variables have fourth-order 
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cumulant C.   The results of Appendix A imply that the complex-valued random variable 
a — (b + ic)/y/2 has the following cumulants: 

°a,l = 0 
Ua,2 = 0 

°a,2 = 1 

Ua,3 = 0 

r1 
°a,3 = 0 

°a,4 = C/2 

Ua,4 = 0 

r2 
°a,4 = C/2. 

It follows that minimizing the fourth-order cumulant of b minimizes the fourth-order cumu- 
lants of a. 

10    Numerical Methods of Minimization 

The two numerical methods used to find random variables with minimum fourth-order cum- 
ulants are described in this section. 

10.1 Exhaustive Search 

This program searches for the real- or complex-valued symbol constellation that gives the 
smallest nth-order cumulant by exhaustive search. The range of symbol values and the 
fineness of the search grid are among the input parameters. An optional input parameter 
is an initial constellation, so that results from a coarse search can be refined. The symbol 
variable range and the probabilities are discretized and the constraints are checked for each 
possible combination of symbols and probabilities (with the additional constraint that the 
probabilities must sum to one). If the constraints are met, then the fourth-order cumulant is 
computed and compared to the minimum obtained thus far. This program is computationally 
expensive for random variables with large alphabet size, and can only be used to find small- 
alphabet distributions by using the currently available computing resources. 

10.2 Gaussian Approximation 

The real-valued discrete random variable with uniform spacing and with minimum nth-order 
cumulant obtained by approximating the Gaussian PDF is sought. By uniform spacing we 
mean that the difference between every two adjacent symbols (on the real line) is a constant. 
This approximation is specified by two parameters: width and size. The width parameter is 
the width of the Gaussian distribution that is split into size pieces, the centers of which are 
uniformly spaced. Thus, the first element in the constellation corresponds to the amount 
of area in the tail of the Gaussian, and subsequent elements have probability equal to the 
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area of the Gaussian centered at the element value, with width equal to width/'size.   The 
parameter size is equal to the size of the desired signal constellation. 

This approximation method is an attempt to answer the question: Where does one place 
size impulses on the real line such that the higher-order cumulants for the resultant PDF 
are minimum? 

11    Numerical Results 

11.1 Real-Valued Constellations 

In the case of real-valued variables, the exhaustive search method is used for the case of 
M — 4, and the Gaussian approximation method is used for M = 4,8, and 16. 

In the case of exhaustive search, the four symbols are constrained to have magnitude 
greater than or equal to 0.0, but less than or equal to K — 3.0. For a symbol grid with fineness 
8 a and probability grid with fineness 8p = e2, the results of the computer searches using the 
exhaustive search method are shown in Table 6. For the case of equiprobable symbols, 
8a = 0.05, and the same bounds on the symbol magnitude, the resulting distribution is 
±1.4, ±0.15, and the cumulant corresponding to this distribution has magnitude 1.03. Note 
that this distribution is close to that obtained by analysis in Section 6. 

The Gaussian approximation technique yields the minimum cumulants and corresponding 
constellations shown in Table 7. For the case of M = 4, preliminary searches showed that 
the optimal width parameter was between 4.0 and 5.0, and for M = 8 and 16, it was between 
5.0 and 6.0. For each of these cases, 1000 widths falling between the stated lower and upper 
bounds were used. 

11.2 Complex-Valued Constellations 

The exhaustive searches for complex-valued random variables were not as fruitful as those 
for real-valued random variables. In particular, the same alphabet size (M = 4) and bound 
on symbol magnitude (K = 3) parameters as used in the real-valued search were used in the 
search for complex-valued variables. The constraint (21) was omitted in light of the results 
of Appendix A, and the probabilities, are constrained to be equal. The results are listed 
in Table 8. This random variable corresponds to a QPSK or 4QAM signal. The result is 
significant because it implies that the symbol alphabet size M is not large enough to allow 
the simultaneous satisfaction of the various constraints and small cumulant value. However, 
searching for larger-alphabet random variables is prohibitively computationally costly with 
available computing resources. As shown in the next section, there do indeed exist larger 
alphabet complex-valued random variables with small fourth-order cumulants. 

11.3 Low-Probability-of-Intercept Signals 

In this section, some of the distributions that were found by the aforementioned numerical 
techniques are used to design digital QAM signals.  The strengths of the regenerated sine 

12 



waves (both pure and impure) for orders two, three, and four are measured and tabulated, 
and are compared to the strengths of BPSK, 16QAM, and duobinary signals. 

The complex-valued random variables that are needed to create the complex-valued PAM 
signals are constructed from the minimum-cumulant real-valued random variables as de- 

scribed in Section 9. That is, let b and c be independent real-valued random variables with 
some minimum-cumulant distribution. The complex-valued random variable a = (b + ic)/\/2 
is used to create the PAM signal, which is the baseband representation of the radio-frequency 
digital QAM signal. The pulse function p(t) is that for duobinary signaling [3]. This choice, 
as noted previously, eliminates the second-order cyclostationarity that is associated with the 
pulse rate. Two such signals, one corresponding to row three of Table 6 and the other corre- 
sponding to row one of Table 7, were simulated and their second-, third-, and fourth-order 
cyclic moments and cumulants for a — 0 and 1/T0 were measured. The former signal is de- 
noted by S\ and the latter by Si. The results are shown in Table 10. Similar measurements 
for three common digital communication signals are included for comparison. The signals 
were generated using independent bit sequences, and the total data length is 32768 samples, 
which corresponds to 4096 symbols. It can be seen from the table that the strengths of 
the cumulant sine waves for the signals S\ and S2 are very much smaller than those for the 
other three signals, indicating that the two signals have great potential to avoid detection 
by SOCS and cumulant-based interception techniques. Measurements of the cyclic moments 
were also made. The results are shown in Table 11. The results in the table indicate that 
the designed signals also have potential to avoid detection by moment-based interception 
techniques. 

Finally, Table 9 provides one means for coding a bit stream into the symbols corre- 
sponding to Si. The idea is to code each incoming pair of bits (which are equiprobable by 
assumption) into one of several symbols according to a particular probability rule. Thus, 
each dibit is not coded into a unique symbol (except for the dibit 00), but each received 
symbol can be decoded into only one dibit. In the table, the third column contains the 
probabilities that each symbol will be chosen as the transmitted symbol, given that the dibit 
in the first column is presented to the coder. It is evident that the price paid for low prob- 
ability of intercept is an increased number of states in the modulation, which may in turn 
necessitate more power in the tranmitted signal for accurate demodulation. 

12     Conclusions 

This report documents a study of the possibility of designing low-probability-of-intercept sig- 
nals by minimizing the cumulants of the complex-envelope representation of digital QAM sig- 
nals. In particular, digital QAM signals at radio frequencies can be represented by complex- 
valued pulse-amplitude-modulated signals at baseband, and the cumulants of the discrete 
random variable used to modulate the pulses in this complex-envelope signal are studied for 
common modulation formats. These cumulants are directly proportional to the cumulants 
of the radio frequency signal. Discrete random variable distributions are sought that possess 
minimum cumulants and, therefore, that minimize the cumulants of the passband signal. 

Several numerical methods are used to find such random variable distributions (for real- 
valued variables), complex-valued partial-response digital QAM signals are constructed from 

13 



these distributions, and their cumulants are measured. These cumulants are shown to be 
much less than those for ordinary digital QAM signals, and are less than those for commonly 
used partial-response signals. In addition, the moments of these signals are measured and 
are also seen to be small. Thus, these newly designed signals have potential as covert signals. 

Searching directly for complex-valued random variable distributions was found to be too 
computationally costly for cases of interest. In particular, the size of the symbol constellation 
was limited to four. For this constellation size, the minimum fourth-order cumulant was 
found to be equal to —1, and the corresponding constellation is that for QPSK signaling. This 
is not a particularly small cumulant, since several constellations that were obtained by using 

real-valued random variables yielded fourth-order cumulants of about —0.01 and —0.001, but 
for a constellation size of sixteen. There is the possibility that better designs exist, but they 
cannot be found in a reasonable amount of time without substantially increased computing 
speed. 

A numerical method based on approximating the continuous Gaussian probability density 
function with a discrete random variable was found to be computationally simple, but yields 
random variables whose cumulants that are larger than those found by exhaustive search. 
If distributions with larger alphabets than sixteen are desired, it is recommended that the 
exhaustive search method be used. 

PDF Size Constellation Points (Values of am) 

BPSK 2 ±1 
4-level PAM 4 (±1,±3) X y/5/5 
8-level PAM 8 ±l,±3,±5,±7x 1/V2T 

QPSK 4 ±l,±i 
8PSK 8 ±\/2/2 ± y/2/2i, ±l±i 
16PSK 16 exp(i27rg/16), q — 0, • • •, 15 
32PSK 32 exp(i27rg/32), q = 0, • • •, 31 
64PSK 64 exp(i27rg/64),(? = 0,---,63 
4QAM 4 ±y/2l2 ± iy/2/2 

8QAM 8 (±l,±i,±l±i) x ^2/3 
16QAM 16 (±1 ± i, ±1 ± i/3, ±1/3 ± i/3, ±1/3 ± i) x 3/7IÖ 

64QAM 64 (±q/7 ± ir/7) x y/7/6, for q, r = 1,3,5, 7 

Table 1: Numerical values of the points in the symbol constellations that correspond to some 
common digital communication signals. 
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A    Cumulants of a Constructed Complex Variable 

Suppose b and c are independent identically distributed real-valued random variables such 
that the following hold: 

E[b] = E[c] = 0 (24) 

E[b2} = E[c2] = l (25) 

E[b3] = E[c3} = 0 (26) 

E[b4} = E[c4] = C + 3. (27) 

Find the cumulants of the random variable a = b + ic. 

E[a]    =    C1,o = Cl1 = E[b] + iE[c] = 0 

E{\a\2}    =    C2,1 = E[b2 + c2] = l + l = 2 
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E[a2 

E{a3] 

E[a2a*\ 

E[a4} 

E[a3a*] 

E[\a\4} 

^2,0 — ^2,2 

E[b2 - c2 + 2ibc] = 1-1 + 0 = 0 

Cs,o = Cl3 = E[(b + ic)3} 

E[b3 + 3ib2c + 36(ic)2 + {ic)3} = 0 

C3,i = C^ = E[{b + ic)2(b-ic)] 

E[b3} + iE[c3] + iE[b2c] + E[bc2} = 0 

C4,o = C4A 

=   E 

E[{b + ic)4} 
4     /4\ 

SW6"(,C) 
.4   ,   L4       ß„2i2l 

4—n 

£[c4 + 64 - 6c262] = 2C 

C4A = Cl3 = E[{b + ic)3(b-ic)} 

E[b4] - E[c4] = 0 

C4,2 + 2£;[|G|
2

]
2
 = C4,2 + 8 

£[64 + c4 + 2&V] = 2£[c4] + 2 

6*4,2 = 2C. 
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Constellation 
(PDF) 

M/C Order n 
2 4 6 8 10 

BPSK M 1.0 1.0 1.0 1.0 1.0 
4-level PAM M 1.0 1.64 2.92 5.25 9.45 
8-level PAM M 1.0 1.76 3.62 7.92 17.9 

BPSK C 1.0 -2.0 16.0 -272.0 7936.0 
4-level PAM C 1.0 -1.36 8.32 -111.85 2603.14 

8-level PAM C 1.0 -1.24 7.19 -92.0 2039.5 

Table 2: The moments (M) and cumulants (C) for the real-valued signal constellations 
shown in Table 1. The constellations are scaled so that their variance is one. Moments and 

cumulants for odd values of n are equal to zero. 

PDF 

Order of Moment (n) 
4 6 8 10 

Number of conjugated variables (m) 
0,4 2 1,5 3 0,8 2,6 4 1,9 3,7 5 

QPSK 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 
8PSK 0.0 1.0 0.0 1.0 1.0 0.0 1.0 1.0 0.0 1.0 
16PSK 0.0 1.0 0.0 1.0 0.0 0.0 1.0 0.0 0.0 1.0 
32PSK 0.0 1.0 0.0 1.0 0.0 0.0 1.0 0.0 0.0 1.0 
64PSK 0.0 1.0 0.0 1.0 0.0 0.0 1.0 0.0 0.0 1.0 

4QAM -1.0 1.0 -1.0 1.0 1.0 -1.0 1.0 1.0 -1.0 1.0 
8QAM -0.67 1.11 -1.04 1.33 1.68 -1.48 1.68 2.17 -2.04 2.17 
16QAM -0.68 1.32 -1.32 1.96 2.2 -2.48 3.12 4.3 -4.58 5.22 
64QAM -0.62 1.38 -1.3 2.23 1.91 -2.76 3.96 4.48 -5.94 7.58 

Table 3: The moments for the complex-valued signal constellations shown in Table 1. All 
constellations have a mean of zero and second-order moment (variance) of 1. The moments 
for values of m not shown in the table are zero, as are moments for odd orders n. 
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PDF 

Order of Cumulant (n) 
4 6 8                                 10 

Number of conjugated variables (m) 
0,4 2 1,5 3 0,8 2,6 4 1,9 3,7 5 

QPSK 1.0 -1.0 -4.0 4.0 -34.0 34.0 -34.0 496.0 -496.0 496.0 
8PSK 0.0 -1.0 0.0 4.0 1.0 0.0 -33.0 -8.0 0.0 456.0 
16PSK 0.0 -1.0 0.0 4.0 0.0 0.0 -33.0 0.0 0.0 456.0 
32PSK 0.0 -1.0 0.0 4.0 0.0 0.0 -33.0 0.0 0.0 456.0 
64PSK 0.0 -1.0 0.0 4.0 0.0 0.0 -33.0 0.0 0.0 456.0 

4QAM -1.0 -1.0 4.0 4.0 -34.0 -34.0 -34.0 496 496 496 
8QAM -0.67 -0.89 2.30 3.33 -13.9 -17.9 -26.3 178 245 352 
16QAM -0.68 -0.68 2.08 2.08 -14.0 -14.0 -14.0 162.7 162.7 162.7 
64QAM -0.62 -0.62 1.8 1.8 -11.5 -11.5 -11.5 127.5 127.5 127.5 

Table 4: The cumulants for the complex-valued signal constellations shown in Table 1. All 
constellations have a mean of zero and second-order cumulant (variance) of 1. The cumulants 
for values of m not shown in the table are zero, as are the cumulants for odd orders n. 

n m 

Modulation Type 

BPSK QPSK 8PSK 
MPSK 

(M > 16) APK 

2 0,2 k/T0 ± 2/c 0 0 0 0 
2 1 k/T0 k/To k/T0 k/To k/To 

4 0,4 k/T0±4fc k/T0±4fc 0 0 k/T0±4fc 

4 2 k/To k/To k/To k/To k/To 

6 0,6 k/T0 ± 6/c 0 0 0 0 
6 1,5 k/T0±4fc k/T0±4fc 0 0 k/T0±4fc 

6 3 k/T0 k/To k/To k/To k/To 
8 0,8 k/T0 ± 8/c k/To ± 8/c k/To ± 8/c 0 k/To ± 8/c 
8 2,6 k/T0±4fc k/To±4fc 0 0 k/T0±4fc 

8 4 k/To k/To k/To k/To k/To 

10 0,10 k/T0 ± 10fc 0 0 0 0 
10 1,9 k/To ± 8/c k/To ± 8/c k/To ± 8/c 0 k/To ± 8/c 
10 3,7 k/T0±4fc k/T0±4fc 0 0 k/T0±4fc 
10 5 k/T0 k/To k/To k/To k/To 

Table 5: Potential cycle frequencies for the analytic signals corresponding to digital QAM 
signals. There are no cycle frequencies for the values of m that are not shown in the table, 
nor for odd values of n. The + sign is associated with the first value of m. The range of k 
for a given signal depends on the excess bandwidth. 
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Sa, 5p Symbols and Probabilities Ca,4 

0.25,0.1 2.0 0.1 -2.0 0.1 0.5 0.4 -0.5 0.4 0.25 

0.1,0.1 2.0 0.1 -2.0 0.1 0.5 0.4 -0.5 0,4 0.25 

0.05,0.1 -2.0 0.1 1.6 0.2 0.3 0.2 -0.35 0.5 -0.028 
0.05,0.05 2.45 0.05 -0.85 0.05 -1.45 0.25 0.45 0.65 -0.00175 

Equiprobable constraint 
0.05, N/A      1.4 0.25 -1.4 0.25 0.15 0.25 -0.15 0.25 -1.03 

Table 6: Results of a numerical search for real-valued distributions with minimum the fourth- 

order cumulant. 

M Symbols and Probabilities Ca,A 

4 -1.75 0.122 1.75 0.122 -0.582 0.378 0.582 0.378 -0.65 
8 ±2.29 0.025 ±1.64 0.070 ±0.98 0.161 ±0.33 0.244 -0.32 

16 
±2.74 0.005 ±2.37 0.009 ±2.01 0.020 ±1.64 0.038 

-0.14 ±1.28 0.065 ±0.91 0.096 ±0.55 0.125 ±0.18 0.143 

Table 7: Results of approximating the Gaussian distribution to obtain real-valued distribu- 
tions with minimum the fourth-order cumulant. 

8a Symbols W,4 

0.5 -1.0 + iO.O 1.0 + iO.O 0.0 + i 0.0-i -1.0 
0.25 -1.0 + iO.O 1.0 + iO.O 0.0 + i 0.0-i -1.0 

Table 8: Results of a numerical search for complex-valued distributions with minimum the 
fourth-order cumulant. The symbols are constrained to have equal probabilities. 
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Bit Pair Constellation Point Coding Probability 

00 (-0.35, -0.35) 1 

01 (-2.0, -2.0) 0.04 
(1.6, 1.6) 0.16 

(1.6, -0.35) 0.40 
(0.3, -0.35) 0.40 

10 (-2.0, 1.6) 0.08 
(1.6, 0.3) 0.16 
(0.3, 1.6) 0.16 

(-0.35, -2.0) 0.20 
(-0.35, 1.6) 0.40 

11 (-2.0, 0.3) 0.08 
(-2.0, -0.35) 0.20 
(1.6, -2.0) 0.08 
(0.3, -2.0) 0.08 
(0.3, 0.3) 0.16 

(-0.35, 0.3) 0.40 

Table 9:   A possible coding of an independent, equiprobable bit stream into the symbols 
associated with signal Si. 
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n m a BPSK Duobinary 16QAM Si s2 
2 0 2/c 0.0 0.0 -29.4 -35.8 -35.8 

2 0 2/c ± 1/To -9.7 -120.0 -37.4 -120.0 -120.0 

2 1 0 0.0 0.0 0.0 0.0 0.0 
2 1 ±1/T0 -9.7 -120.0 -9.4 -120.0 -120.0 

3 0 3/c -46.2 -37.1 -31.3 -32.1 -34.0 
3 0 3/c ± l/To -56.6 -62.1 -39.2 -59.5 -55.2 
3 1 fc -46.2 -37.1 -35.6 -40.9 -30.3 
3 1 fc ± i/r0 -56.6 -62.1 -43.1 -51.5 -62.5 

4 0 4/c 6.0 1.6 -3.4 -30.6 -15.5 
4 0 4/c ± l/7o -4.0 -21.9 -13.6 -48.3 -33.4 

4 1 2/c 6.0 1.6 -27.4 -25.5 -33.5 
4 1 2/c ± 1/To -4.0 -21.9 -38.6 -43.4 -47.6 

4 2 0 6.0 1.6 -3.3 -40.4 -14.4 
4 2 ±1/T0 -4.0 -21.9 -12.2 -46.8 -36.4 

Table 10: Peak pure (cumulant) sine-wave strengths (in dB) for various complex-valued dig- 
ital communication signals for orders n of 2, 3, and 4, and for various numbers of conjugated 
factors m. Si is the signal obtained by using a minimum-cumulant real-valued distribution, 
and S2 is the signal obtained by using a minimum-cumulant real-valued distribution obtained 
by Gaussian approximation. 
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n m a BPSK Duobinary 16QAM 5*1 S2 

2 0 2/c 0.0 0.0 -30.6 -28.6 -33.2 

2 0 2/c ± 1/To -9.2 -120.0 -37.6 -120.0 -120.0 
2 1 0 0.0 0.0 0.0 0.0 0.0 

2 1 ±1/T0 -9.2 -120.0 -9.5 -120.0 -120.0 

3 0 3/c -40.2 -31.5 -35.4 -31.0 -25.9 

3 0 3/c ± l/7b -49.8 -56.1 -40.0 -50.5 -53.6 

3 1 /c -40.2 -31.5 -37.8 -32.2 -33.7 

3 1 /c ± 1/To -49.8 -56.1 -43.0 -53.8 -51.1 

4 0 4/c 0.0 5.3 -3.3 -32.3 -15.1 

4 0 4/c ± 1/To -10.1 -20.6 -13.5 -47.2 -32.6 

4 1 2/c 0.0 5.3 -36.4 -17.4 -26.1 
4 1 2/c ± i/r0 -10.1 -20.6 -45.4 -43.6 -40.5 

4 2 0 0.0 5.3 2.5 6.1 5.2 

4 2 ±l/To -10.1 -20.6 -7.9 -50.6 -38.6 

Table 11: Peak impure (moment) sine-wave strengths (in dB) for various complex-valued dig- 
ital communication signals for orders n of 2, 3, and 4, and for various numbers of conjugated 
factors m. Si is the signal obtained by using a minimum-cumulant real-valued distribution, 
and 5*2 is the signal obtained by using a minimum-cumulant real-valued distribution obtained 
by Gaussian approximation. 
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Signal Detection and Sorting Using Cyclic Cumulants 
in the General Search Algorithm 

by 

Chad M. Spooner     and     William A. Gardner 

Abstract 

The problem of determining the number of cyclostationary signals that are present 
(if any) in a given data record is considered in this report. The signals can be com- 
pletely spectrally and temporally overlapping. Nothing is assumed about the signals 
except that they exhibit cyclostationarity of some order. The detection algorithm, 
called the general search algorithm, can be interpreted as a blind order-recursive cyclic- 
cumulant estimator, and is tested on a variety of signal records containing one, two, 
and three cochannel signals. The results indicate that the algorithm works well and 
merits further study and refinement. 



I 
1 1     Introduction 

When confronted with the problem of intercepting signals that do not originate from friendly 

transmitters, one of the first pieces of information required is whether or not a signal is 

present in the given data record. This signal detection problem becomes a bit more general— 

and more difficult—if one allows for the possibility of the presence of multiple signals in the 

data. In this report, the detection, enumeration, and characterization of multiple spectrally 

and temporally overlapping unknown signals is studied from the point of view of exploiting 

the structure of the statistics of communication signals. In particular, many (if not most) 

communication signals are more accurately modeled as cyclostationary signals rather than as 

stationary signals. It is possible to exploit the properties of the statistics of cyclostationary 

signals to successfully perform the tasks of detection, extraction, direction-finding, signal 

classification, and others even when the data contains multiple temporally and spectrally 

overlapping signals [1]—[21], [30, 31]. 

This report documents an initial inquiry into the possibility of using the higher-order 

moments and cumulants of a cyclostationary data record to determine the number of signals 

present in the record and to estimate some of their modulation parameters. The signals 

of interest herein are continuous-phase frequency-shift keying (CPFSK), phase-shift keying 

(PSK) and, more generally, digital quadrature-amplitude modulation (QAM), although the 

basic search algorithm will work for any cyclostationary signal. It is the processing of the 

output of the search algorithm that must be tailored to more specific signal classes. 

A typical scenario of interest is described in the following. Suppose a given data record 

contains a binary PSK (BPSK) signal, a quaternary PSK (QPSK) signal, and an offset QPSK 

(OQPSK) signal as well as additive white Gaussian noise (WGN). This complex-valued data 

record is obtained by downconverting and sampling the original radio-frequency data. The 

carrier frequencies of the signals are sufficiently closely spaced so as to preclude linear time- 

invariant filtering to separate the signals. The processor does not know that these signals are 

present in the data record. The goal of the processing is to determine the number of signals 

that are present and to estimate their keying rates and, possibly, their carrier offsets (the 

differences between their carrier frequencies and the frequency used for downconversion). 
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The key to the method that is documented in this report is that the signals are statistically ifl 

independent, which implies that the nth-order temporal cumulant function (TCF) for the 

data is asymptotically equal to the sum of the nth-order temporal cumulant functions for the 

individual signals. Each of these cumulant functions is a periodic or polyperiodic function of 

time, which can be expressed in a Fourier series. The frequencies of the Fourier components 

are related to the modulation parameters (the keying rate and carrier offset) of the signals. 

If the Fourier frequencies for each individual signal are distinct, then the Fourier components 

(sine waves) of each signal's nth-order temporal cumulant function can be estimated from the 

polyperiodic nth-order temporal cumulant function of the data. Thus, using the cumulant 

provides for a kind of signal selectivity in the processing. Alternatively, nth-order temporal 

moment functions can often be used to estimate the frequencies of the Fourier components 

of TCFs, but these parameters are not signal selective in general. That is, the amplitude 

and phase of the sine-wave components of the periodic or polyperiodic nth-order temporal 

moment function are functions of all signals that are present in the data, but only some of 

the frequencies are functions of all the signals. Thus, temporal moments can be analyzed 

for the purpose of detection, but are not useful for classification unless there is only one 

signal present (and no noise). A companion report presents some ideas for using cumulants 

to perform signal-selective modulation classification. 

The remainder of the report is organized as follows. In Section 2 the problem of interest 

is stated and the reasons that it is difficult to solve are discussed. In Section 3 the proposed 

solution is described in detail, and some illustrative examples are provided in Section 4. Sec- 

tion 5 presents the results of several computer simulations for signals of practical interest, 

and conclusions are drawn in Section 6. The theory of the higher-order statistics of cyclo- 

stationary signals that forms the basis for the approach taken here is reviewed in Appendix 

A. 

2    The General Search Problem 

In this report, we are interested in solving the general search problem.  The general search 

problem is defined as the problem of detecting the presence of all cyclostationary signals 
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present in a given finite-length data record. The problem is difficult in that there is little 

prior knowledge with which to devise an algorithmic solution. Classical decision theory is 

not tractable because no particular probabilistic models for the signals are assumed (ex- 

cept that they are cyclostationary), the signals are random with unknown power levels and 

modulation types, and the noise is arbitrary. If the signals occupy disjoint portions of the 

spectrum, then energy detection and filtering could be used to detect and sort the signals, 

but if the signals are spectrally overlapping, then both energy detection and filtering are 

ineffective. The kind of processing necessary is that for which the output of the processing 

can be effectively partitioned into subgroups, each of which can be associated with one and 

only one signal in the data. Since linear time-invariant processing is not effective (filter- 

ing cannot separate the signals) and second-order time-invariant statistical processing is also 

not effective (energy detection), both nonlinear and time-varying statistical signal processing 

are possibilities. As it turns out, cumulants of cyclostationary signals are polyperiodically 

time-varying parameters obtained by nonlinear operations. 

The general approach is motivated by the two assumptions that are made: (i) the signals 

are cyclostationary and (ii) the signals are statistically independent. In words, and at the 

risk of oversimplifying, the approach consists of estimating the amplitude, frequency, and 

phase of all finite-strength additive sine-wave components that appear in the output of 

specific polynomial transformations of the data (TCFs). The sine-wave frequencies are then 

grouped by exploiting harmonic relationships. 

The nth-order TCF can be analytically calculated for a large class of communication 

signals. This class is defined by its complex-envelope representation, which is a complex- 

valued pulse-amplitude-modulated signal with independent, identically distributed symbols 

and arbitrary pulse function. This class includes as special cases PSK, 00K, and Mary- 

QAM. For each order n and choice of the number of optional conjugations m, the nth-order 

TCF can be written as a Fourier series in which each sine-wave component has complex- 

valued amplitude given by the nth-order cyclic temporal cumulant function (CTCF). Thus, 

it is possible to list the amplitudes, frequencies, and phases for each order for signals of 

this class. A partial list of potential cycle frequencies is given in Table 1. As evidenced 

by the table, distinct modulation types give rise to distinct patterns (over n and m) of 



I 
cumulant sine-wave frequencies, even if the second-order sine-wave frequencies are identical. I 

This observation can be used to devise classification methods based on estimates of TCFs 

and their constituent sine-wave components. For the purposes of detection and sorting, we fl 

need only focus on the case in which the number of conjugated factors m is half the order n. 

A consequence of this restriction is that only cumulant sine-waves with frequencies equal to I 
's? 

harmonics of the symbol rates of the signals in the data are used, and these frequencies are 

enough to sort and detect provided that the symbol rates are distinct. If the symbol rates are 

not distinct, or if the modulation types need to be recognized, then other choices of numbers 

of conjugated factors must also be included. This restriction n = 1m also substantially eases 

the computations necessary to perform the detection and sorting tasks when compared to 

performing these tasks based on the combined results of other choices of m. 

The algorithm that estimates the TCFs (and, thereby, their Fourier components) is called 

the general search algorithm (GSA), and the algorithm that groups the output of the GSA 

is called the grouping algorithm (GA). These algorithms are described next. 

3    The General Search and Grouping Algorithms 

I 
I 
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I The approach taken to solving the general search problem consists of estimating the cycle 

frequencies of the data for nonlinear processing of various orders [5, 10, 8, 11].   In order 

to associate the resulting cycle frequency estimates with specific signals in the data, it is ■ 

required to estimate cumulant sine-wave frequencies rather than moment cycle frequencies. 

This is because moment cycle frequencies can consist of sums and differences of the cycle 

frequencies for various distinct signals and are, therefore, not associated with any particular 

signal in the data, and because the strengths of the desired sine waves are functions of all 

signals in the data. 

Let N be the maximum order of nonlinearity that is to be used for processing. The goal 

of the processing is to produce a list of cumulant cycle frequencies {ßn} for each value of n 

from 1 to N. The list {ßn} characterizes the detectable cyclostationarity of order n (and 

only n) that is associated with x(t) because it is not contaminated by entries that are due 

to lower-order sine wave interactions.   To accomplish this task, we estimate the temporal 
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cumulant function (TCF) for x(t) for each order n. From this estimate, the cycle frequencies 

{/?„}, which are needed for the estimate of the TCF for order n + 1, can be estimated. 

This approach is justified by the well-known fact that the periodogram is the optimal 

estimator of the frequency of a sine wave in white Gaussian noise. Although we are not 

primarily interested in the case of white Gaussian noise, our algorithm essentially estimates 

the frequencies of a set of relatively strong sine waves in noise and, therefore, the periodogram 

is of interest. In addition, the algorithm implements an estimator of the pure-sine-waves 

function for each order n, which we have shown is the signal-selective function of interest in 

applications. More explicitly, the general search problem can be tackled using the following 

general search algorithm (GSA): 

0 Let n = 1, fix TV > 1, denote the data by x(t), 0<t<T, 

choose iV delays Ti, • • • r/v, and choose m optional conjugations. 

1 Compute C'x{t, r)n = \u]=1 x
w'(< + Tj)] - £ pn \llU &(*, rUj)nj\ for r = [n • • ■ rn] 

2 Compute Y(f) = FFT, {Cx(t,r)n} 

3 Threshold detect the bins of Y to find {ßn} 

4 Compute the CTCFs C^(r)n = (C'x{t,T)ne-i2*ß»t)T 

5 Compute the TCF Cx(t,r)n = J2ßn C^(r)lle«'2'r^ 

6 n —>■ n + 1; ifn<./V then go to 1, else stop. 

The operation of the GSA and the notation that is introduced above are explained in 

detail next. 

In Step 0, the maximum order of nonlinearity to be considered is fixed at N > 1, the 

./V delays to be used are chosen, the m optional conjugations are chosen for each processing 

order n < N, and the processing order n is initialized to 1. 

In Step 1, a pre-estimate of the nth-order TCF for order n is obtained by subtracting from 

the nth-order delay product Ilj=i x^](t + r,-) the products of lower-order TCFs estimated 

in previous iterations of the algorithm. For n = 1, there are no previous iterations, so the 
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first-order pre-estimate of the TCF is set equal to the first-order lag product itself, which is 

just the data x(t + Ti). For n = 2, the product of the first-order TCF estimates for each of 

the selected lags n and r2 are subtracted from the second-order lag product. This removes I 

from consideration any sine waves in the second-order lag product that result from products 

of first-order sine waves. For n > 2, the sum of products of lower-order TCFs is determined 

by the set Pn, which is the set of distinct partitions of the set of indices {1,2, • • •, n}. This 

set is described in Appendix A. 

In Step 2, the pre-estimate of the TCF obtained in Step 1 is Fourier transformed in the 

t variable in order to determine its sine-wave components. 

In Step 3, the values of this transformed TCF pre-estimate are compared to a threshold. 

The locations in / of the values of the transformed pre-estimate that exceed the threshold 

are declared to be cycle frequencies {/?„}. 

In Step 4, the estimated cycle frequencies are used to compute estimates of the cyclic 

temporal cumulant functions (CTCFs), which are the Fourier coefficients of the TCF es- 

timates. If the Fourier transform in Step 2 has length equal to the total amount of data 

available (T), then the CTCFs are already computed in Step 2, and do not need to be 'M 

computed again. To handle the case in which the cycle frequencies do not lie on bin-center 

frequencies, interpolation techniques are used to estimate the frequency of the sine wave, I 

and its magnitude and phase can then be estimated by direct computation of the discrete 

s Fourier transform. If two adjacent bins are declared to correspond to sine-wave frequencies, ■ 

then this interpolation is done. That is, if two adjacent bins have large magnitudes, then it is 

assumed that a single sine wave with frequency somewhere between the two bin frequencies 

is responsible for this energy. 

In Step 5, the estimated cycle frequencies and CTCFs are combined to obtain an estimate 

of the TCF that replaces the pre-estimate obtained in Step 1. 

Finally, in Step 6 the order of processing n is incremented and tested against its maximum 

allowed value N. If n is less than or equal to N then the algorithm returns to Step 1. 

Otherwise, processing is terminated. 

Step 1 is the crucial step. Cycle frequencies could be estimated by Fourier transforming 

the lag product itself and thresholding its bins, but the resulting list of cycle frequencies would 
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contain entries due to interactions among the distinct signals in the data. By subtracting 

the particular sum of products of lower-order TCFs in step 1, these false cycle frequencies 

are removed from consideration. 

The output of the GSA is a sequence of lists that are indexed by order. Each list entry 

contains two elements. The first is the cycle-frequency estimate, usually denoted by a or 

/?, and the second is the amplitude of the sine wave with frequency a for the appropriate 

order (phase information is suppressed in the output of the GSA, but retained internally). 

Multiple delay sets and choices of conjugated factors can be accommodated by sequential 

runs of the algorithm. The software implementation of the GSA is described in the next 

section. 

3.1    The GSA Program 

The GSA programtakes a data record as its input and produces cycle frequency and cumulant 

estimates for specified orders. The minimum order is 1 and the maximum order is denoted 

by N. Typically, the minimum order is set to 2, and—as explained below—only the even 

orders between 2 and N are used. The other inputs to the GSA program are a set of delay 

vectors of dimension N, and a set of conjugation flags of dimension N. The GSA program 

then estimates the Nth-order temporal cumulant function (TCF) for each delay vector for 

each conjugation set. For instance, the program could be used to compute the fourth-order 

cumulant of the input data for the two delay vectors 

12 5 6 

0 6 9  10 

and the two conjugation-flag vectors 

0 0  0 0 

0 0  10 

where 0 means do not conjugate and 1 means conjugate. This would result in four fourth- 

order temporal cumulant estimates. Two of these estimates are fourth-order estimates with 

0 conjugations, and the remaining two are fourth-order estimates with the third variable 



conjugated. The former are called (4, 0) estimates (n = 4 and m = 0), and the latter 

are (4, 1) estimates. Because the GSA algorithm is recursive, second-order cumulants are 

estimated in order to estimate the fourth-order cumulants (if desired, the first- and third- 

order estimates can be made as well, but this is often unnecessary because these cumulants 

are zero for almost all communication signals [except those with pilot tones]). Since TCFs 

are polyperiodic functions, an individual TCF estimate can be represented by a collection 

of ordered triplets where the first element is a sine-wave frequency, the second is a sine-wave 

amplitude, and the third is a sine-wave phase. For the purpose of detecting and sorting, 

the phase is not needed. Thus, the phase is retained while the program is running, but 

only the frequency and magnitude parameters are actually output. An individual datum in 

the output of the GSA program is the quadruple (n,m,a,C), where n is the order, m is 

the number of conjugations, a is the cycle frequency estimate, and C is the estimate of the 

magnitude of the (n, m) CTCF for frequency a. These quadruplets are indexed by the delay 

vectors T. 

The output of the GSA program contains data of two fundamental sorts: Xv, which is 

the set of upper data, and XL, which is the set of lower data. These are defined as 

n — 2m 4i£ XL, 

n ^ 2m =>x£ X\j. 

Elements in XL have cycle frequency estimates a that are not (typically) related to carrier 

frequencies, whereas elements in Xy have cycle frequency estimates that are related to carrier 

frequencies. 

The goal of the grouping algorithm, and its implementation, the grouping program, is to 

group this multidimensional data into sets such that each set corresponds to one and only 

one signal in the original data record. 

3.2    The Grouping Algorithm 

The output of the GSA program is a set of lists that are indexed by the order of processing. 

Visual inspection of these lists is difficult and is not particularly revealing. Because the 

cycle frequencies of communication signals (especially digital QAM signals) are harmonically 
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related and appear at multiple orders of processing n, if there is a signal present in the 

data, then there will be a set of a estimates that are harmonically related. The main idea 

behind the grouping algorithm (GA) is to extract these cycle frequency estimates and group 

them together. The other cycle frequency-estimates in the output of the GSA program are 

discarded. 

The word "cluster" in the following description of the GA refers to a standard unsupervis- 

ed-learning partitioning algorithm [32]. This algorithm finds a collection of subsets of a given 

set such that a certain cost function related to the sample mean and variance of each subset 

is minimized. That is, at termination this cost would increase if any element of one of the 

sets is removed and then added to any of the other sets. 

The grouping algorithm consists of the following steps: 

1. Read GSA data: Xj = (n, m, a,C)j for j = 1, • • •, M, where 1 < n < N and 0 < m < N 

for each j. 

2. Separate the data into two sets: Xu, which is the set of upper data (n ^ 2m), and XL, 

which is the set of lower data (n = 2m). 

3. Cluster the set XL into three sets based on the value of C. That is, find a three-set 

partition of XL such that the data with the largest C are in one set, those with the 

smallest C are in another called Xw (the w stands for "weak"), and the rest are in a 

third. 

4. Find the union of the two sets with largest C; call this set Xs (the s stands for "strong"). 

5. Cluster Xs based on the value of a. This results in many sets, each of which contains 

only elements with a that are "close together." 

6. Search the set Xw for any elements with a that are harmonically related (integer 

multiples or divisors) to the mean of any of the sets obtained in the previous step. If 

any are found, add them to an appropriate set. Discard the remaining elements of Xw. 

7. Rechtster A',. 
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8. Group the sets obtained by the previous step. This results in a group of sets. Each 

of the groups is associated with a unique fundamental frequency. The members of the 

groups are sets that are assumed to contain cycle frequencies that correspond to the 

various harmonics of this fundamental. Compute the harmonic numbers for each of 

these sets. 

9. Store the vector of fundamentals (one fundamental for each group) for later use. 

10. Cluster the set X\j into three sets based on the value of C. That is, find a three-set 

partition of Xu such that the data with the largest C are in one set, those with the 

smallest C are in another called Xw, and the rest are in a third. 

11. Find the union of the two sets with largest C; call this set Xs. 

12. Cluster Xs based on the value of a. 

13. Search the set Xw for any elements with a that are separated by a multiple of one 

of the stored fundamentals from the mean of any of the sets obtained in the previous 

step. This must be done only for data that have matching n and m values. If any such 

elements are found, add them to an appropriate set. Discard the remaining elements 

of Xw. 

14. Recluster Xs. 

15. Using the stored fundamentals, associate the sets obtained in the previous step with 

a group obtained in step 8. Thus, upper sets are associated with lower sets through a 

fundamental frequency. 

16. Estimate the carrier offset for the upper elements in each group. 

17. Compute the harmonic of each upper cluster in each group by using the fundamental 

and the estimated offset. 

18. Splinter each set in the following way. Form a separate set for each of the distinct (n, 

m) pairs that appear in the set. At the end of this procedure, every set will correspond 

to a single (n, m) pair and to a single harmonic. 
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19. Output the matrix of detected harmonics for each group. The rows of these matrices 

correspond to the harmonic number, and the columns correspond to each (n, rn) pair 

associated with that group. The value of an element of the matrix is the maximum 

value of the C parameters of all the data points Xj contained in the set that corresponds 

to the appropriate group and (n, m) pair. This matrix shall be called a, feature matrix. 

4    Illustration of the General Search Algorithm 

In this section, some simple examples of the operation of the GSA are presented. These 

examples are meant to illustrate the properties of cumulants, estimates of which are used 

to solve the general search problem. More realistic examples are presented and discussed in 

Section 5, where the properties of the cumulant are more difficult to appreciate directly. 

Since the nth-order temporal cumulant function is also the pure-sine-waves function [11], 

the nth-order TCF for any polyperiodic signal is equal to the signal itself for n = 1 and is 

identically zero for n > 1. This is because there can be no pure nth-order sine waves for 

n > 1 for such a signal—all sine-wave components in the higher-order delay products must 

result from products of first-order sine waves. A simple example of such a signal is a single 

sine wave. Other examples include the sum of a finite number of sine waves and any periodic 

function, such as a square wave (which is equal to a sum of an infinite number of sine waves). 

Consider a sine wave with frequency 1/11 and amplitude 1.0. Estimates of the nth-order 

TCFs for orders one through four obtained by processing a sampled version of such a sine 

wave are shown in Figure 1. As is evident from the figure, the first-order TCF is equal to 

the sine-wave itself, and the other TCFs are zero. Next, consider the sum of two sine waves 

with frequencies 1/11 and 1/16 and amplitudes 1.0 and 2.0, respectively. Estimates of the 

nth-order TCFs for this signal are shown in Figure 2 for orders one through four. Again, 

only the first-order TCF is nonzero. A third sine wave with frequency 1/7 is added and the 

measurements repeated. The results are shown in Figure 3. Finally, a binary full-duty-cycle 

rectangular-pulse PAM signal with pulse rate 1/23 is added to a sine wave with frequency 

1/11 and the measurement procedure is repeated. The results are shown in Figure 4. The 

second- and fourth-order TCF for the PAM signal for the chosen delay sets should be square 
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waves with 48% duty cycles. As can be seen in the figure, the sine wave does not affect the 

estimation of the two TCFs for the PAM signal, which do not appear as square waves with 

sharp corners due to truncation of the Fourier-series representation of the TCF. 

These examples illustrate that nth-order cumulants do indeed compute pure nth-order 

sine waves. Thus, the GSA, which is based on TCFs, holds promise for computing the correct 

cycle frequencies and corresponding Fourier magnitudes for each signal in a given data set. 

The following section presents examples of the operation of the GSA for signals of interest. 

5    Computer Simulations 

The first example shows the capabilities of the GSA and GA program for the case of 16,384 

samples of a binary rectangular-pulse PAM signal (T0 = 23) in a small amount of WGN. 

The temporal cumulants of order 2, 4, 6, and 8 are estimated for six delay sets, 

00000000 

00000002 

00000004 

00000007 

00000009 

0000000 12 

and 9 choices of conjugated factors (applied to each of the six delay sets), 

00000000 

00000001 

00000011 

00000111 

00001111 

00011111 

00111111 

01111111 

11111111 
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Thirty cycle frequencies per cumulant are estimated and used in the computation of sub- 

sequent cumulants; only fifteen cycle frequencies per cumulant are actually output. This 

is done for the sake of constraining the amount of computation: the run time of the GA 

program is a function of the total number of cycle frequencies output by the GSA program. 

In this case, and all subsequent cases, the candidate symbol interval lengths are constrained 

to be greater than 2.0 and less than 25.0. The search grid has fineness 0.1. The remaining 

parameter to explain is the interval parameter, which specifies the number of intervals in 

which to segment the transform of each pre-estimate of the TCF. The maxima of each in- 

terval are found sequentially. The intervals parameter is set to thirty. The feature matrix 

(explained subsequently) for the output of the grouping program is shown in Figure 5. 

The feature matrix consists of the detected harmonics versus the order/conjugation pairs, 

and the brightness of the squares indicates the strength of the detected harmonic. For all 

the feature matrices shown in this report, the first three columns corresponds to order two, 

the next five correspond to order four, the next seven to order six, and the remaining nine 

to order eight. For a single order, the columns start with m = 0 and end with m = n. In 

addition, only the positive harmonics are shown. If a negative harmonic is detected and the 

corresponding positive harmonic is not detected, then the positive harmonic is replaced by 

the negative. This effectively reduces the number of rows in the plot while representing the 

same information. Finally, the matrix entries that correspond to a = 0 for each order are 

always set to zero (these are the matrix entries for n — 2m and k — 0). The cyclic cumulants 

for these cycle frequencies are not signal selective—all signals in the data can contribute to 

these cyclic cumulants. Thus, they are not useful for defining a feature that depends only 

on a single signal. 

In the second example, the measurement above is repeated for the case of a duobinary 

PAM signal, which exhibits no second-order cyclostationarity. The result is shown in Figure 

6. 

The next example shows the capabilities of the programs for the case of 16,384 samples of 

a complex-valued BPSK signal with symbol rate 1/23 and frequency offset 0.004. The same 

cumulants are measured with the same parameters as in the previous case. The feature 

matrix for this case is shown in Figure 7.   The grouping program correctly estimates the 
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symbol rate and carrier offset. The same procedure is used to estimate and group the cycle 

frequencies for QPSK, 8PSK, and OQPSK signals. The results are shown in Figures 8, 9, 

and 10. 

By examining Figures 5-10, and reviewing the relevant entries in Table 1, it can be seen 

that the observed patterns are correct, although there may be a few harmonics missing here 

and there. In particular, the feature matrix for BPSK should be "full," that is, all harmonics 

are exhibited by the signal for all even orders and, indeed, the feature matrix for BPSK does 

show harmonics for every order/conjugation pair that is output by the GSA program. For 

QPSK, only the (n,m) pairs such that n — 2m is a nonzero multiple of 4 should exhibit 

carrier-related cyclostationarity (see Table 1), and for 8PSK, only the (8, 0) and (8, 8) 

pairs should exhibit carrier-related cyclostationarity. The case of offset (staggered) QPSK 

is particularly interesting because its higher-order statistics cannot be analyzed by using 

the previously derived cumulant formulas for complex PAM because its complex envelope 

is a PAM signal that does not have independent symbols. Nevertheless, the second-order 

cyclostationarity for this signal is known (see [15], page 447), and it matches with the first 

three columns of the Figure 10. This example shows that the GSA/GA programs can be 

used not only for detection and sorting, but also as research tools that facilitate a numerical 

evaluation of the cyclostationarity of a given data record. 

The next set of examples shows the capability of the algorithms to sort two equipower 

signals. The same parameters are sued as in the previous cases. The first example shows 

the capability of the programs to detect and sort two real-valued rectangular-pulse PAM 

signals. One of the signals has a symbol rate of 1/15, and the other has a symbol rate 

of 1/23. The signals have equal power levels. The feature matrices are shown in Figures 

11-12. Some harmonics are missing because the number of cycle frequency estimates output 

per delay set and conjugation set pair is not increased with respect to the measurements 

that were performed on single signals. Also, the bottom row of the feature matrix for 12 is 

missing because the two PAM signals have the same "carrier offset" of zero. Only one of 

the signals can claim these cycle frequency estimates, and in this case it is the first signal. 

The ability to correctly sort the cycle frequency estimates for the case of signals with shared 

cycle frequencies is to be added at a later date. 
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BPSK signals are considered next. One of the signals has carrier offset of -0.005 and a 

symbol rate of 1/15, and the other has offset 0.004 and a symbol rate of 1/23. The feature 

matrices are shown in Figures 13-14. This test is repeated for two QPSK, 8PSK, and OQPSK 

signals that have the same symbol rates and carrier frequencies as the two BPSK signals. 

The results are shown in Figures 15-16, 17-18, and 19-20, respectively. 

The next set of examples shows the capability of the algorithms to sort three equipower 

signals. For these cases, only the lower cycle frequencies are used (those for n — 2m). This 

is done both to demonstrate that this is a viable approach, and to reduce the computational 

requirements of the experiments. The cases of rectangular-pulse PAM, BPSK, QPSK, 8PSK, 

and OQPSK are considered. The results are shown in Figures 21-33. 

6 Conclusions 

This report documents an initial inquiry into the possibility of using higher-order cyclosta- 

tionarity, and in particular higher-order cyclic cumulants, to detect and sort an unknown 

number of cyclostationary signals in a given data record. The ?^th-order cyclic cumulants 

of complex-valued data record (analytic signal representation of a radio-frequency signal) 

for orders 2 through 8 are estimated and grouped such that the groups each correspond to 

one and only one signal in the data. The method was qualitatively tested for several signal 

environments consisting of one, two, and three cochannel signals and was seen to perform 

well. 

7 Research and Development 

The following list of tasks are suggested by the research that is documented in this report: 

1. Detailed computer simulations for signal environments of interest, 

2. Mathematical analysis of the higher-order cyclostationarity of communication signals 

that are not well modeled as complex-valued PAM signals at baseband, such as CPFSK, 

FSK, and analog FM, 
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3. Cataloging of the higher-order cyclic features of signals of interest, 

4. Mathematical characterization of the quality of the GSA's cyclic cumulant estimates 

as a function of SNR, SIR, and collect time, 

5. Development of generalizations of the GA to handle the case in which signals share 

certain cyclostationarity properties (e.g., two or more signals with the same symbol 

rate but distinct carrier frequencies), 

6. Study alternate techniques for estimating sine-wave frequencies (rather than using the 

discrete Fourier transform). 

7. Study alternate feature-extraction scheme that uses the cycle frequencies computed by 

the GSA and grouped by the GA to do precise cumulant measurements. 

n m 

Modulation Type 

BPSK QPSK 8PSK 
MPSK 

(M > 16) APK 

2 0,2 k/T0 ± 2/c 0 0 0 0 
2 1 k/T0 k/T0 k/T0 k/T0 kin 
4 0,4 k/T0±4fc k/T0±4fc 0 0 k/T0±4fc 

4 2 k/T0 k/T0 k/T0 k/To k/T0 

6 0,6 k/T0 ± 6/c 0 0 0 0 
6 1,5 k/T0±4fc k/T0±4fc 0 0 k/T0±4fc 

6 3 k/T0 k/T0 k/T0 k/T0 k/T0 

8 0,8 k/T0 ± 8/c k/T0 ± 8/c k/T0 ± 8/c 0 k/T0 ± 8/c 

8 2,6 k/T0±4fc k/T0±4fc 0 0 k/T0 ± 4/c 

8 4 k/T0 k/T0 k/T0 k/T0 k/T0 

10 0,10 k/T0 ± 10/c 0 0 0 0 
10 1,9 k/T0 ± 8/c k/T0 ± Sfc k/T0 ± Sfc 0 k/T0 ± 8/c 

10 3,7 k/T0±4fc k/T0±4fc 0 0 k/T0±4fc 

10 5 k/T0 k/T0 k/T0 k/T0 k/T0 

Table 1: Cycle frequencies for the analytic signals corresponding to PSK and other digital 
QAM signals. APK signals include non-PSK digital QAM signals used in practice, such as 
4QAM, 8QAM, etc. There are no cycle frequencies for the values of m that are not shown 
in the table, nor for odd values of n. The + sign is associated with the first value of m. 
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Figure 3:  The temporal cumulant functions 
Figure 1:  The temporal cumulant functions   r     ,, r ,-, ■ r™     j i °     . . tor the sum of three sine waves,   the delays 
for a single sine wave. The delays are all zero n c ,       , ° J are ail zero tor each order. 
for each order. 
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t Figure 4:  The temporal cumulant functions 

for the sum of a sine wave and a full-duty- 
Figure 2:  The temporal cumulant functions i ,        i i     u- D*M   •      i ° v cycle rectangular-pulse binary rAM signal. 
for the sum of two sine waves. The delays are   The dday getg ^ [0]? [Q n]> and [Q n „ ^ 
all zero for each order. f        J ± J r <.-    i lor orders one, two, and tour, respectively. 
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Figure   5:      Measured   feature   matrix   for   Figure   7:      Measured   feature   matrix   for 
rectangular-pulse PAM. complex-valued BPSK. 

II   III   II 
Figure 6: Measured feature matrix for duobi-   Figure   8:      Measured   feature   matrix   for 
nary (partial-response) PAM. complex-valued QPSK. 
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Figure 11: Measured feature matrix for one of 
the groups output by the GSA/GA programs. 

Figure   9:      Measured   feature   matrix   for   The input is the sum of two rectangular-pulse 
complex-valued 8PSK. PAM signals.  The program correctly identi- 

fied the symbol rate as 1/23, and carrier offset 
as 0.004. 

II   II 0      Figure 12: Measured feature matrix for one of 
the groups output by the GSA/GA programs. 

Figure   10:     Measured  feature   matrix  for   The input is the sum of two rectangular-puse 
complex-valued offset QPSK. PAM signals.  The program correctly identi- 

fied the symbol rate as 1/15, and carrier offset 
as -0.005. 
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Figure 13: Measured feature matrix for one of Figure 15: Measured feature matrix for one of 
the groups output by the GSA/GA programs, the groups output by the GSA/GA programs. 
The input is the sum of two BPSK signals. The input is the sum of two QPSK signals. 
The program correctly identified the symbol The program correctly identified the symbol 
rate as 1/23, and carrier offset as 0.004. rate 1/23, and carrier offset as 0.004. 

10 15 

Figure 14: Measured feature matrix for one of Figure 16: Measured feature matrix for one of 
the groups output by the GSA/GA programs, the groups output by the GSA/GA programs. 
The input is the sum of two BPSK signals. The input is the sum of two QPSK signals. 
The program correctly identified the symbol The program correctly identified the symbol 
rate as 1/15, and carrier offset as -0.005. rate as 1/15, and carrier offset as -0.005. 
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Figure 17: Measured feature matrix for one of 
the groups output by the GSA/GA programs. 
The input is the sum of two 8PSK signals. 
The program correctly identified the symbol 
rate as 1/23, but the carrier offset as 0.032. 

Figure 19: Measured feature matrix for one of 
the groups output by the GSA/GA programs. 
The input is the sum of two OQPSK signals. 
The program correctly identified the symbol 
rate as 1/23, and carrier offset as 0.004. 
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Figure 18: Measured feature matrix for one of Figure 20: Measured feature matrix for one of 
the groups output by the GSA/GA programs, the groups output by the GSA/GA programs. 
The input is the sum of two 8PSK signals. The input is the sum of two OQPSK signals. 
The program correctly identified the symbol The program correctly identified the symbol 
rate as 1/15, but the carrier offset as 0.059. rate as 1/15, and carrier offset as -0.005. 
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Figure 21: Measured feature matrix for one of Figure 23: Measured feature matrix for one of 
the groups output by the GSA/GA programs, the groups output by the GSA/GA programs. 
The input is the sum of three rectangular- The input is the sum of three rectangular- 
pulse PAM signals. The program correctly puse PAM signals. The program correctly 
identified the symbol rate as 1/19. identified the symbol rate as 1/23. 

Figure 22: Measured feature matrix for one of Figure 24: Measured feature matrix for one of 
the groups output by the GSA/GA programs, the groups output by the GSA/GA programs. 
The input is the sum of three rectangular- The input is the sum of three BPSK signals, 
puse PAM signals.    The program correctly The program correctly identified the symbol 
identified the symbol rate as 1/15. rate as 1/23. 
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Figure 25: Measured feature matrix for one of Figure 27: Measured feature matrix for one of 
the groups output by the GSA/GA programs, the groups output by the GSA/GA programs. 
The input is the sum of three BPSK signals. The input is the sum of three QPSK signals. 
The program correctly identified the symbol The program correctly identified the symbol 
rate as 1/15. rate as 1/23. 

Figure 26: Measured feature matrix for one of Figure 28: Measured feature matrix for one of 
the groups output by the GSA/GA programs, the groups output by the GSA/GA programs. 
The input is the sum of three BPSK signals. The input is the sum of three QPSK signals. 
The program correctly identified the symbol The program correctly identified the symbol 
rate as 1/19. rate as 1/19. 
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Figure 29: Measured feature matrix for one of Figure 31: Measured feature matrix for one of 
the groups output by the GSA/GA programs, the groups output by the GSA/GA programs. 
The input is the sum of three QPSK signals. The input is the sum of three 8PSK signals. 
The program correctly identified the symbol The program correctly identified the symbol 
rate as 1/15. rate as 1/19. 

Figure 30: Measured feature matrix for one of Figure 32: Measured feature matrix for one of 
the groups output by the GSA/GA programs, the groups output by the GSA/GA programs. 
The input is the sum of three 8PSK signals. The input is the sum of three 8PSK signals. 
The program correctly identified the symbol The program correctly identified the symbol 
rate as 1/23. rate as 1/15. 
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Figure 33: Measured feature matrix for one of 
the groups output by the GSA/GA programs. 
The input is the sum of three OQPSK signals. 
The program correctly identified the symbol 
rate as 1/15. 

Figure 34: Measured feature matrix for one of 
the groups output by the GSA/GA programs. 
The input is the sum of three OQPSK signals. 
The program correctly identified the symbol 
rate as 1/9.5. 

Figure 35: Measured feature matrix for one of 
the groups output by the GSA/GA programs. 
The input is the sum of three OQPSK signals. 
The program correctly identified the symbol 
rate as 1/11.5. 
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A    The Theory of Higher-Order Cyclostationarity 

In this appendix we define the temporal and spectral moment and cumulant functions that 
form the basis of the theory of HOCS. Then we give a brief tutorial explanation of how cum- 
ulants arise as the solution to the problem of generating pure nth-order sine waves. Finally, 
we explain the signal-selectivity property that is unique to the cyclic temporal cumulants 
and their Fourier transforms, the cyclic polyspectra, and we illustrate the parameters using 

the example of digital QAM signals. 
For a time-series x(t) for —oo < t < oo, we define the nth-order lag-product time-series 

by 
n 

i=i 

where r = [TX ■■■Tn\
! and [•]* denotes matrix transposition. The cyclic temporal moment 

function (CTMF) of order n is defined by the limiting time average 

1    rT/2 ■ i •      \ 
Ra

x{r)n   ±      lim - /       Lx(t, r)n e~^at dt = (Lx(t, r)ne"j2^) , (2) 

which is simply the Fourier coefficient associated with the component el27Tat in the time- 
series Lx(t, r)n. It can be seen that the CTMF is a Fourier coefficient of a moment function 
because the nth-order fraction-of-time probabilistic moment (the temporal moment function 
[TMF]) associated with the lag product Lx(t,r)n is given by 

Rx(t,r)n± E^{Lx(t,r)n} (3) 

where E^ {■} = J2ae{a} ({-)e-i2vat) el2lTat, and can be expressed as [15, 13] 

Jk(*,r)n=   £   Ra
x(r)ne*™\ (4) 

a£{a} 
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where the sum is over all real numbers a, called nth-order cycle frequencies, for which 
R%(r)n ^ 0. In (3), E^ {•} is the temporal expectation operation (or the sine-wave extrac- 
tion operation). The functions (2) and (3) exist and are well-behaved for appropriate mod- 
els of many time-series including amplitude modulated (AM), pulse-amplitude-modulated 
(PAM), phase-shift-keyed modulated (PSK), and digital quadrature AM (QAM) signals 

[10, 4], and others. 
The temporal cumulant function (TCF) of order n for the set of time-series translates 

{x(t + Tj)}"=1 is defined by 

k{p)J[Rx{t,TVj)nj (5) 

which is completely analogous to its stochastic-process counterpart in [22]. The sum in (5) is 
over all distinct partitions Pn of the set of indices {1,2, • • •, n}, where each partition {vk}l-i 
has p elements, 1 < p < n, and k(p) = (-l)p_1(p - 1)!. The vector rV] is the vector of Uj 

lags with indices in the set Uj. 
The cyclic temporal cumulant function (CTCF) of order n is the Fourier coefficient of the 

TCF: 
Cf(r)n±   (Cx{t,T)ne-^

ßt). (6) 

The set of real numbers {ß} for which C^(T)n ^ 0 is called the set of pure nth-order cycle 
frequencies, for reasons that will become clear subsequently. Combining (3)-(6) reveals that 
the CTCF is given by the following explicit function of lower-order CTMFs: 

CS(r)n = E *G>)   E      II^Kk (7) 

where 1 = [1 • • • 1]T, and a = [a\ ■ ■ • ap]*. The CTCF was originally derived in [2] as the 
solution to the problem of removing from the Fourier coefficient R^(T)n all contributions 
from Fourier coefficients Rx3(rUj)n] of lower order. This is equivalent to removing from the 
finite-strength additive sine-wave component of frequency ß in the lag product time-series 
Lx(t, r)n all contributions from products of sine-wave components in lag products Lx{t, ru)n 

of lower order—whose frequencies sum to ß—that can be obtained by factoring Lx(t,r)n. 
By using the relationship between moments and cumulants[27], the CTMF can be expressed 
in terms of CTCFs of order n and lower: 

K{r)n E 
p 

E n^K), 
L/3'l: 3 = \ 

(8) 

The CTMF and the CTCF are not in general integrable due to the presence of sinusoidal 
components in r. These components formally result in Dirac deltas in the n-dimensional Fou- 
rier transform of the CTCF. However, a reduced-dimension version of the CTCF is absolutely 
integrable for many time-series of interest and, therefore, it is strictly Fourier transformable 
[2]. The reduced-dimension CTCF (RD-CTCF) is simply the CTCF associated with the n 
variables {x(t + rj)}"=1 with rn = 0. The RD-CTCF is denoted by 

Cx{
u)n =   Cß

x(r)n   for Ti = ui and   rn = 0, (9) 
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where u is (n — l)-dimensional vector [ui ■ ■ ■ ii„_i]. The (n — l)-dimensional Fourier transform 
of (9) is denoted by Pg(f')n: 

w)n = r ■■■ r c^u)ne-^uifdu, 
J — OO J — OD 

(10) 

where/'= [/!•••/B_a]t. 
The spectral moment, spectral cumulant, and cyclic polyspectrum are defined as follows. 

Consider the n complex-demodulate time-series Xr(t,fj) for j = l,---,n, associated with 
narrow bandpass filtered versions of x(t), where 

rt+T/2 
XT(tJ)= x(v)e-t2^ 

Jt-T/2 
dv. (11) 

The limit as T —)■ oo of the limiting time-average of the product of these spectral components 
is called the spectral moment function (SMF) of order n 

Sx(f)n±   lim (Jl XritJ^j, 

and it can be shown that Dirac deltas can be factored out as follows: 

(12) 

(13) 

where S(-) is the Dirac delta function. However, the factor S%(f')n contains additional Dirac 
deltas for many signals and n > 2 (e.g., BPSK and n = 4). 

The spectral cumulant function (SCF) of order n is given by 

fc(p)n^(/,>)"> 
J=I 

(14) 

where fu   is the vector of rij frequencies with subscripts in the set i/j, and it follows from 
(13) that Dirac deltas can again be factored out: 

^(/)n  = E^(/'M(/tl-/?). 
ß 

(15) 

Analogous to the definition of the cyclic spectrum (and power spectrum) in [15], the 
factor P£(f')n is defined to be the cyclic polyspectrum (CP) and is given explicitly by 

PßAf)n = E 
v-i 

KP)   E   S?(f'^l[{S2i(fv.)ni6(fl.l-aj)} 
Cttl=/3 j=l 

(16) 

As first shown in [2], the CP is the (n - l)-dimensional Fourier transform of the RD-CTCF 
Cx(u)n (cf. (10)). This is a generalization of the Wiener relation between the power spec- 
trum and autocorrelation from second-order stationary time-series (cf. [15]) to nth-order 
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cyclostationary time-series. Within the stochastic-process framework of generally nonsta- 
tionary processes, it should be called the cyclic Shiryaev-Kolmogorov relation [22], which is 
the generalization of the Wiener-Khinchin relation (cf. [15]). Because the RD-CTCF can be 
absolutely integrable, the CP—unlike the SMF—contains no Dirac deltas. That is, all Dirac 

deltas present in the individual terms in (16) cancel. 
Let us now see how the cumulant arises as the solution to the problem of generating 

pure nth-order sine waves. For low orders n, it is easy to mathematically characterize a 
pure nth-order sine wave in a way that matches our intuition. For notational simplicity, 
we choose the case of no conjugated factors in (1). For n = 1, the moment sine waves 
(the sine-wave components of the polyperiodic TMF) are, by definition, pure lst-order sine 
waves. For n = 2, all products of lst-order moment sine waves can be subtracted from the 
2nd-order moment sine waves to obtain the pure 2nd-order sine waves, which are denoted 

by crs(t,T1,T2)2 , 

*X(t,TuT2)2       ±       E& {X(t + n)x(t + T3)} - &a>{x{t + n)} E& {X{t + T3)} 

There are several interesting points to be made concerning pure 2nd-order sine waves: 
(i) since Rx(t,Ti)ui = 1,2, and Rx(t,T)2 are 1st- and 2nd-order moments respectively, then 
ax(t, TX, r2)2 is a temporal covariance function; (n) if Rx(t, T)X = 0, then there are no lower- 
order sine waves, and the 2nd-order moment sine waves are equal to the pure 2nd-order 
sine waves; (Hi) if the variables x(t + rx) and x(t + r2) are statistically independent (in the 
temporal sense [15, 13]), then £<*> {x{t + Tl)x(t + r2)} = E& {x(t + n)} E^ {x{t + r2)} 
and therefore ax(t, TI,T2)2 = 0, that is, there is no pure 2nd-order sine wave for this particular 
pair of delays Tx and T2. This latter point shows that the set of pure cycle frequencies {/3} 
can be considerably different from the set of impure (moment) cycle frequencies {a}. 

The pure 3rd-order sine waves are obtained next. From the 3rd-order moment sine waves, 
we want to subtract each possible product of lower-order sine waves, but only once each. 
Thus, we subtract products of pure 2nd-order and pure lst-order sine waves from the 3rd- 
order moment sine waves, rather than subtracting products of 1st- and 2nd-order moment 

sine waves: 

(7x(t,T)3       =     E{a} I f[x(t + Tj) \ -<Tx(t,TUT2)2 <rx(t,T3)i    ~ CTx(t,TUT3)2 CTx(t, T2)X 

-crx{t,r2,T3)2 crx(t,Ti)i   - crx(t,Ti)i <Tx(t,T2)i crx(t,T3)i . 

Observe that there are no other possible products of pure lower-order sine waves. The terms 
in the sum of products that are subtracted can be enumerated by considering the distinct 
partitions of the index set {1,2,3}. A partition of a set G is a collection of p subsets of G, 

{i/j}Pj=1, with the following properties: G = [fj=i uj and Vj 0^ = 0 for j ^ k. The set P3 

of distinct partitions of {1,2,3} is given by 

p = l 
p = 2 
p = 3 

{1,2,3} 
{1,2}, {3}      {1,3}, {2}      {2,3}, {1} 

{1}, {2}, {3} • 
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Thus, we can express the pure 3rd-order sine wave ax(t: T)3   as a sum over the elements of 

r p 

P3 
n ^(*> ;i7) 

where r„. is a subset of {TJ}|=1 with elements having indices in Uj, and nj is the number of 
elements in i/j. Notice that, as in the case of n = 2, if the lst-order moment sine waves are 
zero, then the 3rd-order moment sine waves are equal to the pure 3rd-order sine waves. In 
this case, there are no products of lower-order sine waves to subtract from the moment sine 
waves. 

The formula for the pure nth-order sine waves is 

<?x{t-,T)n = Rx(t,r)n - 22 
Pn 

n<jx(t,TVj)n] ;i8) 

where Pn is the set of distinct partitions of the index set {1,2, • • ■ , n}. The pure-sine-waves 
formula (18) gives all the pure nth-order sine waves associated with the delay set r. A 
single pure nth-order sine wave with frequency ß can be selected by computing the Fourier 
coefficient: 

°Z{r)n e^ = (ax(u, r)n e-"2*«"-«)) , (19) 

and can be expressed in terms of pure lower-order sine waves by using the Fourier series for 
each ax(t,Tl/})nj   in (18): 

ßk 

(20) 

where the sum is over all cycle frequencies ßk of order k. Thus, the strength of a single pure 
nth-order sine wave is given by 

4iT)n = Rß
x(r)n - ^ 

Pn Vß=ß j=l 
(21) 

where ß is the p-dimensional vector of pure cycle frequencies [ßi ■ ■ ■ ßp]^ and 1 is the 
p-dimensional vector of ones. Hence, the pure-sine-wave strength erf (r)n is given by the 
CTMF i?f (r)n with all products of pure lower-order sine-wave strengths, for sine waves 
whose frequencies sum to ß, subtracted out. From (8), it is clear that the pure-sine-wave 
strength erf (r)„ is identical to the CTCF C^(r)n. 

Finally, let us see how the CTCF (and the CP) is signal selective.  Let the signal x(t) 

consist of the sum of M mutually independent signals {ym{t)}m=ii 

M 

z(0 = J2 y™(t)- (22) 
m=l 
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Then the addition rule for cumulants [4, 23] can be used to show that the nth-order TCF 
for x(t) is the sum of TCFs for {ym(t)}, 

M 
C^,T)n=£CU*,r)n. (23) 

m=l 

Thus, the pure nth-order sine waves in the delay products of each ym(t) add to form the 
pure nth-order sine wave in the delay product of x(t): 

M 

Cß
x{r)n = £ Cl(r)„. (24) 

m=l 

The TMF does not in general obey this useful cumulative relation (24). That is, the nth-order 
TMF for x(t) is not the sum of nth-order TMFs for each ym(t): Rx(t, r)n ^ J2m=i Rym(t, r)n 

. An exception is the case of zero-mean signals and n < 3, for which moments and cumulants 
are equal, which is a commonly encountered case in HOS. 

To illustrate how (24) can be applied in practice, consider the situation in which {ym(t)} 
represent M interfering signals that overlap in time and frequency, but each ym(t) possesses 
some distinct nth-order cycle frequency, say ßm. Then it follows from (24) that 

Cf"(r)n=C£(r)„,    m = l,2,---,M. (25) 

This indicates that the presence or absence of each of the signals ym(t) can be detected 
by measuring (estimating) the CTCFs of x(t) for the cycle frequencies {ßm}, and that 
parameters of each of the signals, on which these CTCFs depend, can be estimated. As 
illustrated in [15, 12, 14] for second order and in [4] for higher order, this signal-selectivity 
property can be exploited in numerous ways to accomplish noise-and-interference-tolerant 
signal detection and estimation. 

As another application, let M = 2, yi(t) be non-Gaussian, and y2(^) be Gaussian. Then 
Cy2(t,T)n = 0 for n > 3 and, from (23), we have Cx(t,r)n = Cyi(t,r)n, n > 3, which 
indicates the detectability of yi(t) with no knowledge about j/2^) except that it is Gaussian. 

As an example of the cyclic polyspectrum, we consider the class of digital QAM signals 
described by their complex envelopes, which can be expressed as x(t) = J2m=-oo amP(t — 
mT0 — t0), where p(t) is the complex pulse and {am} is the complex digital data. Assuming 
that {am} is an independent sequence, we have shown [10, 5, 11] that the CP for the set of 
variables {x^'(t + Tj)}7-^ (with rn = 0), where (*)_,- denotes an optional conjugation of the 
jth variable, is given by 

£?(/')» = ^P((-Uß - l*f]t)n ff P((-U){*hel2*ßt°,     ß = k/To,        (26) 
*<> 3 = 1 

where (—)j is the optional minus sign corresponding to the optional conjugation (*)j, Ca%n 

is the cumulant of am, and 
/oo 

p(t)e-i2*ft dt. (27) 
-oo 

Thus, the CP is simply a scaled product of n pulse transforms. 
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Signal Classification Using the General Search 
Algorithm 

by 

Chad M. Spooner     and     William A. Gardner 

Abstract 

In this report the problem of determining the number and modulation types of 
cyclostationary signals that are present (if any) in a given data record is studied. The 
signals are assumed to be cochannel; that is, the signals are assumed to substantially 
overlap in time and frequency. The general search algorithm is used to blindly estimate, 
in an order-recursive procedure, higher-order cyclic cumulants, then the grouping al- 
gorithm is used to associate the cyclic cumulants with each other and, therefore, with 
signals in the data, and finally the classification algorithm is used to determine the 
modulation type for each signal based on the grouped cyclic cumulant estimates. The 
GSA/GA tandem is described in detail and applied to simulated data to produce a 
catalog of features for classification. These two algorithms are applied to data records 
that contain two cochannel signals to illustrate the fact that the measurements of the 
features are signal selective. Finally, the CA is described and it is shown that cer- 
tain signal types cannot be uniquely classified (given the cochannel signal assumption) 
without using cyclic cumulants of order larger than two. 



1     Introduction 

There are several situations in which a signal reception system receives multiple signals with 

unknown modulation types. One example is the general nuisance of cochannel interference. 

In this situation, the signal of interest is received along with other signals that are not of 

interest, and about which nothing is known. Another example is when the radio spectrum is 

monitored for the purpose of regulating radio transmissions in a given geographical area. In 

the former situation, the task is to remove the effects of the interfering signals on the signal 

of interest, and in the latter situation, the task is to determine the types of signals that 

are received and, possibly, to demodulate the signals to determine their message content. A 

third example is that of signal search for interception, in which the goal is to determine as 

much information as possible about all the unknown signals that are present (including the 

modulation format, location and type of emitter, and, possibly, the message). 

When a single signal is received in a small amount of noise, various techniques can 

be used to make a decision about the signal's modulation type [25]—[37]. For example, a 

phase histogram can be computed, the bandwidth and center frequency can be accurately 

estimated, the modulus can be measured, pilot tones can be detected, etc. Various automatic 

modulation classifiers can be constructed based upon these and other measurements. On the 

other hand, when multiple signals are received and these signals are substantially spectrally 

and temporally overlapping, or when the noise is strong with respect to the signal, these 

techniques tend to fail. The primary reason for this is that the above measurements are 

not signal selective; each signal (including noise) contributes to the measurements, thereby 

degrading them, and reducing the efficacy of the subsequent classification algorithm. 

In this report, the possibility of using the cyclostationarity property of communication 

signals to perform modulation recognition is investigated. In particular, the second- and 

higher-order cyclostationarity [14, 11, 4, 5] of the signals is used to create signal-selective 

features for modulation classification and recognition. Because the relevant statistical pa- 

rameters associated with cyclostationarity are asymptotically independent of stationary noise 

and interference, so are the derived feature vectors. In addition, if the modulation param- 

eters of the received signals are distinct (e.g., distinct baud rates and carrier frequencies), 



then the feature vector for a particular received signal will be asymptotically independent of 

all other received signals. 

2    The Classification Problem 

Let x(t) denote the received data, which consists of the sum of M statistically independent 

signals Sj(t) together with additive noise: 

M 

z(*) = E *;(*) + «>(*)    0<t<T. (1) 

M is assumed to be unknown and w(t) is assumed to be stationary and Gaussian. The signal 

x(t) is complex-valued, and it is assumed that it is obtained by in-phase and quadrature sam- 

pling of the downconverted radio-frequency signal. Thus, if the downconversion frequency 

is equal to the carrier frequency of the signal Sfc(i), then this signal has a carrier offset of 

zero. The carrier offsets of the M signals are assumed to be sufficiently closely spaced so as 

to preclude the use of filtering to separate the signals. 

The classification problem considered herein is to determine the modulation type of each 

of the signals Sj(t). The first part of this problem consists of determining the number of 

cyclostationary signals that are present in the data record. This is called the general search 

problem. Higher-order cyclostationarity is used to devise a solution to the general search 

problem. This solution provides estimates of a feature vector for each signal in the data. 

Classification can then be accomplished by using the measured feature for each signal. 

The main idea behind the use of higher-order cyclostationarity to perform signal classifi- 

cation is that of sine-wave generation by nonlinear transformation. When a cyclostationary 

signal is subjected to a series of nonlinear transformations, a series of sets of finite-strength 

additive sine waves are produced. Distinct modulation formats produce distinct sets of 

sine waves if the series of nonlinear transformations is chosen correctly. When the series of 

transformations in applied to data that contains multiple signals with distinct modulation 

parameters, the resulting sine waves can be grouped into disjoint subsets such that each 

subset's strengths, frequencies, and phases depend (asymptotically) on only a single signal 

that is present in the data.   The particular series of nonlinear transformations of the data 



that is proposed here is the series of nth-order temporal cumulant functions. 

The remainder of this report is organized as follows. In Section 3, an overview of the 

classification procedure is presented. In Section 4, the general search algorithm (GSA), which 

is used to compute the sequence of nth-order temporal cumulant functions, and the group- 

ing algorithm (GA), which is used to associate (group) the detected sine-wave frequencies 

obtained by the GSA, are presented and explained. In Section 5, the feature vectors for 

classification are defined in terms of the output of the GA, and extensive computer simu- 

lation examples are presented. In Section 6, the proposed classification algorithm (CA) is 

presented. The fundamentals of the theory of the higher-order statistics of cyclostationary 

signals are provided in Appendix A. 

3 Overview of Solution 

A crude outline of the classification procedure is given in the following: 

• Collect data. 

• Fix maximum order N of nonlinearity for processing. 

• Estimate temporal cumulant functions (TCFs) for orders 1 (or 2) through N using the 

general search algorithm. 

• Extract from the estimated TCFs a set of TCFs for individual signals in the data using 

the grouping algorithm. 

• Compare each extracted set of TCFs to known sets of TCFs for signals of interest. 

Classify the modulation type of the signal based on the similarity to the known TCFs 

using the classification algorithm. 

4 The General Search and Grouping Algorithms 

The approach taken to solving the general search problem consists of estimating the cycle 

frequencies of the data for nonlinear processing of various orders [5, 10, 8, 11].   In order 



to associate the resulting cycle frequency estimates with specific signals in the data, it is 

required to estimate cumulant sine-wave frequencies rather than moment cycle frequencies. 

This is because moment cycle frequencies can consist of sums and differences of the cycle 

frequencies for various distinct signals and are, therefore, not associated with any particular 

signal in the data, and because the strengths of the desired sine waves are functions of all 

signals in the data. 

Let N be the maximum order of nonlinearity that is to be used for processing. The goal 

of the processing is to produce a list of cumulant cycle frequencies {/?„} for each value of n 

from 1 to N. The list {ßn} characterizes the detectable cyclostationarity of order n (and 

only n) that is associated with x(t) because it is not contaminated by entries that are due 

to lower-order sine wave interactions. To accomplish this task, we estimate the temporal 

cumulant function (TCF) for x(t) for each order n. From this estimate, the cycle frequencies 

{ßn}, which are needed for the estimate of the TCF for order n + 1, can be estimated. 

This approach is justified by the well-known fact that the periodogram is the optimal 

estimator of the frequency of a sine wave in white Gaussian noise. Although we are not 

primarily interested in the case of white Gaussian noise, our algorithm essentially estimates 

the frequencies of a set of relatively strong sine waves in noise and, therefore, the periodogram 

is of interest. In addition, the algorithm implements an estimator of the pure-sine-waves 

function for each order n, which we have shown is the signal-selective function of interest in 

applications. More explicitly, the general search problem can be tackled using the following 

general search algorithm (GSA): 

0 Let n — 1, fix A > 1, denote the data by x(t), 0 < t < T, 

choose N delays Ti, • • • T/V, and choose m optional conjugations. 

1 Compute C'x(t, r)n = \u]=1 x^(t + r,)} -EP„  \llPj=i Cx(t, rU])J for r = [n • • ■ rn] 

2 Compute  Y(f) = FFT, {C'x(t,r)n} 

3 Threshold detect the bins of Y to find {/?„} 

4 Compute the CTCFs C^{r)n = (C'x{t,r)ne-i2^t)r 



5 Compute the TCF Cx{t,r)n = £/3n Cf"(r)ne'2^"( 

6 n —> n + 1; if n < N then go to 1, else stop. 

The operation of the GSA and the notation that is introduced above are explained in 

detail next. 

In Step 0, the maximum order of nonlinearity to be considered is fixed at N > 1, the 

N delays to be used are chosen, the m optional conjugations are chosen for each processing 

order n < N, and the processing order n is initialized to 1. 

In Step 1, a pre-estimate of the nth-order TCF for order n is obtained by subtracting from 

the nth-order delay product YYj=1 x^J(t + Tj) the products of lower-order TCFs estimated 

in previous iterations of the algorithm. For n = 1, there are no previous iterations, so the 

first-order pre-estimate of the TCF is set equal to the first-order lag product itself, which is 

just the data x(t + Ti). For n = 2, the product of the first-order TCF estimates for each of 

the selected lags T\ and r2 are subtracted from the second-order lag product. This removes 

from consideration any sine waves in the second-order lag product that result from products 

of first-order sine waves. For n > 2, the sum of products of lower-order TCFs is determined 

by the set P„, which is the set of distinct partitions of the set of indices {1,2, ■ ■ • ,n}. This 

set is described in Appendix A. 

In Step 2, the pre-estimate of the TCF obtained in Step 1 is Fourier transformed in the 

t variable in order to determine its sine-wave components. 

In Step 3, the values of this transformed TCF pre-estimate are compared to a threshold. 

The locations in / of the values of the transformed pre-estimate that exceed the threshold 

are declared to be cycle frequencies {ßn}. 

In Step 4, the estimated cycle frequencies are used to compute estimates of the cyclic 

temporal cumulant functions (CTCFs), which are the Fourier coefficients of the TCF es- 

timates. If the Fourier transform in Step 2 has length equal to the total amount of data 

available (T), then the CTCFs are already computed in Step 2, and do not need to be 

computed again. To handle the case in which the cycle frequencies do not lie on bin-center 

frequencies, interpolation techniques are used to estimate the frequency of the sine wave, 

and its magnitude and phase can then be estimated by direct computation of the discrete 



Fourier transform. If two adjacent bins are declared to correspond to sine-wave frequencies, 

then this interpolation is done. That is, if two adjacent bins have large magnitudes, then it is 

assumed that a single sine wave with frequency somewhere between the two bin frequencies 

is responsible for this energy. 

In Step 5, the estimated cycle frequencies and CTCFs are combined to obtain an estimate 

of the TCF that replaces the pre-estimate obtained in Step 1. 

Finally, in Step 6 the order of processing n is incremented and tested against its maximum 

allowed value N. If n is less than or equal to TV then the algorithm returns to Step 1. 

Otherwise, processing is terminated. 

Step 1 is the crucial step. Cycle frequencies could be estimated by Fourier transforming 

the lag product itself and thresholding its bins, but the resulting list of cycle frequencies would 

contain entries due to interactions among the distinct signals in the data. By subtracting 

the particular sum of products of lower-order TCFs in step 1, these false cycle frequencies 

are removed from consideration. 

The output of the GSA is a sequence of lists that are indexed by order. Each list entry 

contains two elements. The first is the cycle-frequency estimate, usually denoted by a or 

/?, and the second is the amplitude of the sine wave with frequency a for the appropriate 

order (phase information is suppressed in the output of the GSA, but retained internally). 

Multiple delay sets and choices of conjugated factors can be accommodated by sequential 

runs of the algorithm. The software implementation of the GSA is described in the next 

section. 

4.1     The GSA Program 

The GSA program takes a data record as its input and produces cycle frequency and cumulant 

estimates for specified orders. The minimum order is 1 and the maximum order is denoted 

by N. Typically, the minimum order is set to 2, and—as explained below—only the even 

orders between 2 and N are used. The other inputs to the GSA program are a set of delay 

vectors of dimension N, and a set of conjugation flags of dimension N. The GSA program 

then estimates the Arth-order temporal cumulant function (TCF) for each delay vector for 

each conjugation set. For instance, the program could be used to compute the fourth-order 
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cumulant of the input data for the two delay vectors 

12  5  6 

0  6  9  10 

and the two conjugation-flag vectors 

0 0 0 0 

0 0  10 

where 0 means do not conjugate and 1 means conjugate. This would result in four fourth- 

order temporal cumulant estimates. Two of these estimates are fourth-order estimates with 

0 conjugations, and the remaining two are fourth-order estimates with the third variable 

conjugated. The former are called (4, 0) estimates (n = 4 and m = 0), and the latter 

are (4, 1) estimates. Because the GSA algorithm is recursive, second-order cumulants are 

estimated in order to estimate the fourth-order cumulants (if desired, the first- and third- 

order estimates can be made as well, but this is often unnecessary because these cumulants 

are zero for almost all communication signals [except those with pilot tones]). Since TCFs 

are polyperiodic functions, an individual TCF estimate can be represented by a collection 

of ordered triplets where the first element is a sine-wave frequency, the second is a sine-wave 

amplitude, and the third is a sine-wave phase. For the purpose of detecting and sorting, 

the phase is not needed. Thus, the phase is retained while the program is running, but 

only the frequency and magnitude parameters are actually output. An individual datum in 

the output of the GSA program is the quadruple (n,m.,a,C), where n is the order, m is 

the number of conjugations, a is the cycle frequency estimate, and C is the estimate of the 

magnitude of the (n, m) CTCF for frequency a. These quadruplets are indexed by the delay 

vectors r. 

The output of the GSA program contains data of two fundamental sorts: Xu, which is 

the set of upper data, and XL, which is the set of lower data. These are defined as 

n = 1m ^i€ XL, 

n ^ 2m 4i£ Xu- 



Elements in XL have cycle frequency estimates a that are not (typically) related to carrier 

frequencies, whereas elements in Xv have cycle frequency estimates that are related to carrier 

frequencies. 

The goal of the grouping algorithm, and its implementation, the grouping program, is to 

group this multidimensional data into sets such that each set corresponds to one and only 

one signal in the original data record. 

4.2    The Grouping Algorithm 

The output of the GSA program is a set of lists that are indexed by the order of processing. 

Visual inspection of these lists is difficult and is not particularly revealing. Because the 

cycle frequencies of communication signals (especially digital QAM signals) are harmonically 

related and appear at multiple orders of processing n, if there is a signal present in the 

data, then there will be a set of a estimates that are harmonically related. The main idea 

behind the grouping algorithm (GA) is to extract these cycle frequency estimates and group 

them together. The other cycle frequency-estimates in the output of the GSA program are 

discarded. 

The word "cluster" in the following description of the GA refers to a standard unsupervis- 

ed-learning partitioning algorithm [24]. This algorithm finds a collection of subsets of a given 

set such that a certain cost function related to the sample mean and variance of each subset 

is minimized. That is, at termination this cost would increase if any element of one of the 

sets is removed and then added to any of the other sets. 

The grouping algorithm consists of the following steps: 

1. Read GSA data: x2 = (n, m, a,C)j for j = 1, • • •, M, where 1 < n < N and 0 < m < N 

for each j. 

2. Separate the data into two sets: Xu, which is the set of upper data (n / 2m), and XL, 

which is the set of lower data (n = 2m). 

3. Cluster the set XL into three sets based on the value of C. That   is, find a three-set 

partition of XL such that the data with the largest C are in one set, those with the 
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smallest C are in another called Xw (the w stands for "weak"), and the rest are in a 

third. 

4. Find the union of the two sets with largest C; call this set Xs (the s stands for "strong"). 

5. Cluster Xs based on the value of a. This results in many sets, each of which contains 

only elements with a that are "close together." 

6. Search the set Xw for any elements with a that are harmonically related (integer 

multiples or divisors) to the mean of any of the sets obtained in the previous step. If 

any are found, add them to an appropriate set. Discard the remaining elements of Xw. 

7. Recluster Xs. 

8. Group the sets obtained by the previous step. This results in a group of sets. Each 

of the groups is associated with a unique fundamental frequency. The members of the 

groups are sets that are assumed to contain cycle frequencies that correspond to the 

various harmonics of this fundamental. Compute the harmonic numbers for each of 

these sets. 

9. Store the vector of fundamentals (one fundamental for each group) for later use. 

10. Cluster the set X\j into three sets based on the value of C. That is, find a three-set 

partition of Xy such that the data with the largest C are in one set, those with the 

smallest C are in another called Xw, and the rest are in a third. 

11. Find the union of the two sets with largest C; call this set Xs. 

12. Cluster Xs based on the value of a. 

13. Search the set Xw for any elements with a that are separated by a multiple of one 

of the stored fundamentals from the mean of any of the sets obtained in the previous 

step. This must be done only for data that have matching n and m values. If any such 

elements are found, add them to an appropriate set. Discard the remaining elements 

of Xw. 
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14. Recluster Xs. 

15. Using the stored fundamentals, associate the sets obtained in the previous step with 

a group obtained in step 8. Thus, upper sets are associated with lower sets through a 

fundamental frequency. 

16. Estimate the carrier offset for the upper elements in each group. 

17. Compute the harmonic of each upper cluster in each group by using the fundamental 

and the estimated offset. 

18. Splinter each set in the following way. Form a separate set for each of the distinct (n, 

m) pairs that appear in the set. At the end of this procedure, every set will correspond 

to a single (n, m) pair and to a single harmonic. 

19. Output the matrix of detected harmonics for each group. The rows of these matrices 

correspond to the harmonic number, and the columns correspond to each (n, m) pair 

associated with that group. The value of an element of the matrix is the maximum 

value of the C parameters of all the data points XJ contained in the set that corresponds 

to the appropriate group and (n, m) pair. This matrix shall be called a, feature matrix. 

5    Feature Vectors for Classification 

The feature vector, which consists of a set of pairs of TCF Fourier component frequencies 

(cycle frequencies a) and magnitudes (cyclic cumulant magnitudes |CTCFQ|), can be viewed 

as a one-dimensional vector with complex-valued elements (a + z'|CTCFa|) indexed by (n, m), 

or as a two-dimensional vector (matrix) with real-valued elements indexed by [a,(n,m)]. 

We will, therefore, use the terms feature vector and feature matrix interchangeably. The 

uniqueness of a particular signal's feature vector is most easily appreciated visually by using 

the matrix interpretation. The columns of the feature matrix correspond to the distinct 

order/number-of-conjugations pairs used (the (n,m) pairs), and the rows correspond to the 

harmonic number of the detected harmonic k, where a — k/T0 for which T0
_1 is the symbol 

rate of the signal that gives rise to the feature. The value of the matrix for a given row and 
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column is the maximum (over delay sets) absolute value of the amplitude of the sine wave 

with the harmonic specified by the row and corresponding to the (n,m) pair specified by 

the column. For example, the GSA might produce the cycle frequency a0 for order 2 and 

number of conjugations 1 for several different delay pairs (TJ,^). The GA uses all of these 

instances of detection to properly group all the GSA-produced cycle frequencies, but it only 

outputs the largest amplitude. If the number and range of the delay vectors that are input to 

the GSA are large enough, then the GSA should produce among these instances of detection 

of this harmonic one that corresponds to its maximum theoretical value. Ideally, then, the 

feature matrix consists of the theoretical maximum of the amplitude of each harmonic that 

that signal actually exhibits for each input (n, m) pair. In practice, it consists of an estimate 

of this matrix. The definition of the feature matrix is shown graphically in Figure 1. 

: 

k = 2 2/c±2/T0 0/c ± 2/To 
k = 1 2/c ± 1/To 0/c ± 1/To 
k = 0 2/c 0/c 

(n,m) = (2,0)    (n,m) = (2,1) 

Figure 1: Definition of a feature matrix for detection and classification. An element of the 
feature matrix corresponds to the maximum of the magnitude of the cyclic cumulant for 
cycle frequency a = (ra — 2m)/c ± k/To, where k is uniquely specified by the row and the 
values of n and m are uniquely specified by the column. 

Examples of measured feature vectors for a maximum order of eight (even orders only) are 

presented for a large number of modulated signals of interest in Figures 2-15. These examples 

include PSK, digital QAM, CPFSK, and partial-response signaling. These features were 

measured from data records of length 16384 (1024 symbols) samples of noise-free simulated 

signals. For all the feature matrices shown in this report, the first three columns corresponds 

to order two, the next five correspond to order four, the next seven to order six, and the 

remaining nine to order eight. For a single order, the columns start with m = 0 and end 

with m = n. It can be seen from these examples that the feature vectors are distinct for 

many kinds of modulations, but that a sufficiently large order of processing must be used 

to insure this distinction. For example, if the order of processing is restricted to six or less, 

then the feature matrices for 8PSK and 16PSK will be scaled versions of each other.  But 
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for processing order of eight and greater, the feature matrices for these two modulations are 

distinct. 

To perform classification of signals using these features, they must be made invariant 

to the signal power and to the specific carrier frequency and symbol rate. By design, the 

features are already invariant to the latter two parameters: the same feature occurs for any 

carrier and symbol rate because it is the existence and relative magnitudes of the symbol-rate 

harmonics that define the feature. However, two signals that are identical except for their 

power levels will not yield the same feature. Moreover, the two resulting features are not just 

multiples of each other. The effect of scaling a signal on the classification feature is explained 

in the next section. Following that, in Section 6, a classification algorithm is proposed, along 

with a method of normalizing the measured feature for the class of rectangular-pulse digital 

QAM signals. Further research is required to generalize the method to other signal classes. 

5.1    Features of Scaled Signals 

In this section, the effect of signal scaling on the classification features is investigated. This 

is an important topic because the power of the signals in the data is unknown. The effect of 

scaling a signal on the feature matrix is not linear. In particular, the scaling of the signal can 

be interpreted as a scaling of the symbol constellation and, therefore, the effect of scaling is 

reflected entirely in the cumulant of the symbol variable. Let a be a random variable with 

cumulants C™„, where n is the order of the cumulant and m specifies the number of times the 

variable is conjugated [11]. Then the random variable x = Ba, where B is a complex-valued 

constant, has cumulants Bn-m(B*)mC^n. 

Let s(t) represent a complex-valued PAM signal of interest with symbol sequence {ay}. 

The magnitudes of the cyclic cumulants of the signal x(t) = Bs(t), where B is a real number, 

are given by 

\CS(r)n\ = \B\n 
C 
-f±r Ylpit + ^e-Wdt 

1o  J-<x>k=i 
(2) 

where 1/T0 is the symbol rate, p(t) is the pulse function, and ß is the cycle frequency [11]. 
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6     Classification Algorithms 

6.1 Classification From the GSA/GA Output 

The output of the GSA/GA combination can be used to classify the corresponding signal in 

the following way: 

1. Input a measured feature matrix (one of the groups output by the GA). 

2. Compute or retrieve theoretical feature matrices for all desired signal types for the 

same n,m values used to obtain the measured feature matrix. 

3. Using a second- or fourth-order element of the measured feature matrix, determine the 

scaling factor (amplitude of the signal). (A method for doing this for rectangular-pulse 

digital QAM signals is explained in Section 6.2.) Scale the measured feature. Ideally, 

the candidate matrix for the true signal type and the input matrix will now have closely 

matching element values, whereas the other candidate matrices will have values that 

are significantly different. 

4. Compute the difference between the normalized input feature and each theoretical 

candidate feature. 

5. Declare the signal to be of the type that produced the matrix with the smallest differ- 

ence between measured and theoretical features. 

6.2 Rectangular-Pulse Signaling 

In this section, the theoretical feature matrices for a subclass of the class of digital QAM 

signals are computed and the distance between them is evaluated. The subclass is that for 

which the pulse envelope is rectangular. The seven signals that are considered are BPSK, 

QPSK, 8PSK, MPSK, 8QAM, 16QAM, and 64QAM (for MPSK, M > 8). These signals 

contain subsets that have similar cyclostationarity properties for orders 1 through 8, as can 

be seen from the measurements presented in Section 5. The PSK signals have circular symbol 

constellations whereas the QAM signals do not. 
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The theoretical feature matrices can be computed for this subclass because the maxi- 

mum of the cyclic temporal cumulant functions is relatively easy to compute for all orders 

and cycle frequencies. In particular, for any full-duty-cycle rectangular-pulse PAM signal 

with independent identically distributed symbols {am}, the maxima of the cyclic temporal 

cumulant functions are given by 

\Cm I 
max|C*/T'(r)B| = !^,      k^O (3) 

T 7r|fc| 

which occurs whenever the difference between the minimum and maximum values of the 

elements of the delay vector r equals T0 - (2j + l)7o/(2|fc|) for j = 0, • • •, |fc| - 1. Note that 

the cumulant C™n incorporates the optional conjugations employed in C^T°(r)n. For k = 0, 

the maxima are equal to \C™n\ which occur whenever the delay variables are equal to each 

other. A derivation of these results is contained in Appendix B. Since the complex envelope 

representations of digital QAM (including PSK) signals are exactly this type of PAM signal 

(when the pulse envelope is rectangular), these results are directly applicable. 

The result (3) can be used to construct theoretical feature matrices for any order and 

number of harmonics. In this section, the theoretical features for the above-mentioned signals 

are computed and the differences between them measured for the purpose of evaluating the 

potential for classification. This is done for maximum processing orders N of two through 

eight. The results are displayed in terms of a type of confusion matrix. This confusion 

matrix is a plot of the distance between each of the feature matrices. If the features for the 

various signals are sufficiently distinct, then the confusion matrix will be zero along its main 

diagonal and large off this diagonal. If they are not sufficiently distinct, then small values 

appear off the main diagonal. The confusion matrices are shown in Figures 16-19. These 

figures show that the feature matrices become more and more distinct for these modulations 

as the order increases. 

It is interesting to consider the possibility of performing signal classification based only 

on the symbol-rate cyclic features (for which the number of conjugated factors is equal to 

half the processing order). This classification possibility is well motivated because the most 

difficult and error-prone part of measuring the feature matrix involves the estimation of the 

carrier-related cyclic features (for which the number of conjugated factors is not equal to half 

15 



the processing order). The difficulty arises from the fact that there are typically many more 

cycle frequencies for n 7^ 2m, and these are distinct for each such distinct n and m. There are 

many more false cycle frequencies that appear in this group because they must be associated 

with each other on the basis of their distances between each other. By coincidence, there 

can be many false cycle frequency pairs that have the required separation. The confusion 

matrices for the reduced-dimension classification features are shown in Figures 20-23. It can 

be seen that some degree of classification can be achieved using these features, but that it is 

less than that for the complete features. 

6.3    Classification From Precise Cumulant Measurements 

The GSA and GA perform the task of estimating and grouping the cycle frequencies cor- 

responding to the signals in the data quite well, but the GSA is prone to estimating false 

cycle frequencies. These false cycle frequencies tend to degrade the quality of the estimates 

of higher-order temporal cumulant functions, which manifests itself in terms of errors in the 

estimate of the strengths of the cyclic cumulants, but not their frequencies. That is, the 

current implementation of the GSA and GA algorithms seems to be most well-suited to the 

cycle-frequency estimation problem, not the cyclic-cumulant estimation problem. 

The classifier proposed herein depends on accurate measurements of not only the cycle 

frequencies, but also the cyclic cumulants. If another stage of processing is allowable, the cy- 

clic cumulants can be measured using previously developed software (the relevant programs 

are called ctcfn, partitions, and cross_cumulant, which are written in C and were de- 

veloped by the first author during his doctoral research [4]) written expressly for the purpose 

of estimating cyclic cumulants. This software requires knowledge of the lower-order cycle 

frequencies, which is exactly what is obtained by the GSA/GA tandem. In other words, the 

output of the GSA/GA tandem can be used by ctcfn and cross_cumulant to perform more 

precise estimates of the cyclic cumulants, which will result in more accurate estimates of the 

feature vectors and, therefore, better classification. 
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7    Research and Development 

The following list of tasks are suggested by the research that is documented in this report: 

1. Computer simulations for signal environments of interest, 

2. Mathematical analysis of the higher-order cyclostationarity of communication signals 

that are not well modeled as complex-valued PAM signals at baseband, such as CPFSK, 

FSK, and analog FM, 

3. Cataloging of the higher-order cyclic features of signals of interest, 

4. Mathematical characterization of the quality of the GSA's cyclic cumulant estimates 

as a function of SNR, SIR, and collect time, 

5. Study of the various metrics that can be used to measure the distance between feature 

vectors for classification, 

6. Development of generalizations of the GA to handle the case in which signals share 

certain cyclostationarity properties (e.g., two or more signals with the same symbol 

rate but distinct carrier frequencies), 

7. Design and development of fully automated and operator-assisted modes of operation, 

8. Develop alternative hardware/software architectures for the two modes of operation, 

9. Specify graphics for operator-assisted mode (and for demonstration), 

10. Study feasibility of integrating into the GSA/GA system either or both of W. A. 

Brown's MLSC (maximum-likelihood spectral coherence) classifier and W. A. Gard- 

ner's ASCR (adaptive spectral correlation recognition) classifier, both of which utilize 

only second-order cyclostationarity, 

11. Study alternate feature-extraction scheme that uses the cycle frequencies computed by 

the GSA and grouped by the GA to do precise cumulant measurements (see Section 

6.3. 
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Figure 6: Measured feature matrix for a 100%    Figure 8: Measured feature matrix for a 25% 
excess-bandwidth BPSK signal. excess-bandwidth BPSK signal.     The gray 

cells for n = 4 and 6 and large k are false 
cycle frequencies. 

Figure 7: Measured feature matrix for a 50% 
excess-bandwidth BPSK signal.    The gray 
cells for n  =  2 and large k are false cycle   Figure  9:    Measured  feature  matrix for  a 
frequencies. duobinary partial-response PAM signal. 
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Figure 10:   Measured feature matrix for a .,           , r                    .    ,. 
^ °nm,   .      ,.,         ,,,.      •   i       r„. Figure 12:   Measured feature matrix tor a 
CPFSK signal with modulation index of Ü.7. °          .      .      ,        , ,   .     .   ,       f, n _,, .     .      ,   .           ,  PJ „             ,        ,     , CPFSK signal with modulation index ol 1.0. 
This signal does not fit the complex-valued 
PAM model that the GA is configured to rec- 
ognize, and so the feature is not correct. 
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Figure 11:    Measured feature matrix for a 
CPFSK signal with modulation index of 0.5. 
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Figure 15: Measured feature matrix for a 16- 
QAM signal. 
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Figure 16: Theoretical-feature confusion ma- 
trix for seven full-duty-cycle rectangular- 
pulse digital QAM signals for maximum or- 
der N = 2 and m = 0,1,2. The signals 
are (from left to right and from lower to up- 
per) BPSK, QPSK, 8PSK, MPSK, 4QAM, 
8QAM, 16QAM, and 64QAM. 

Figure 18: Theoretical-feature confusion ma- 
trix for seven full-duty-cycle rectangular- 
pulse digital QAM signals for maximum or- 
der N — 6 and m — 0, • • •, 6. The signals 
are (from left to right and from lower to up- 
per) BPSK, QPSK, 8PSK, MPSK, 4QAM, 
8QAM, 16QAM, and 64QAM. 
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Figure 17: Theoretical-feature confusion ma- 
trix for seven full-duty-cycle rectangular- 
pulse digital QAM signals for maximum or- 
der N — .4 and rn = 0, • • •, 4. The signals 
are (from left to right and from lower to up- 
per) BPSK, QPSK, 8PSK, MPSK, 4QAM, 
8QAM, 16QAM, and 64QAM. 

Figure 19: Theoretical-feature confusion ma- 
trix for seven full-duty-cycle rectangular- 
pulse digital QAM signals for maximum or- 
der N = 8 and m = 0, • • •, 8. The signals 
are (from left to right and from lower to up- 
per) BPSK, QPSK, 8PSK, MPSK, 4QAM, 
8QAM, 16QAM, and 64QAM. 
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Figure 20: Theoretical-feature confusion ma- 
trix for seven full-duty-cycle rectangular- 
pulse digital QAM signals for maximum or- 
der N = 2 and n = 2m. (The features consist 
only of symbol-rate harmonics.) The signals 
are (from left to right and from lower to up- 

per) BPSK, QPSK, 8PSK, MPSK, 8QAM, 
16QAM, and 64QAM. 

Figure 22: Theoretical-feature confusion ma- 
trix for seven full-duty-cycle rectangular- 
pulse digital QAM signals for maximum or- 
der N = 6 and n = 2m. (The features consist 
only of symbol-rate harmonics.) The signals 
are (from left to right and from lower to up- 

per) BPSK, QPSK, 8PSK, MPSK, 8QAM, 
16QAM, and 64QAM. 

Figure 21: Theoretical-feature confusion ma- 
trix for seven full-duty-cycle rectangular- 
pulse digital QAM signals for maximum or- 
der N = 4 and n = 2m. (The features consist 
only of symbol-rate harmonics.) The signals 
are (from left to right and from lower to up- 
per) BPSK, QPSK, 8PSK, MPSK, 8QAM, 
16QAM, and 64QAM. 

Figure 23: Theoretical-feature confusion ma- 
trix for seven full-duty-cycle rectangular- 
pulse digital QAM signals for maximum or- 
der N = 8 and n = 2m. (The features consist 
only of symbol-rate harmonics.) The signals 
are (from left to right and from lower to up- 
per) BPSK, QPSK, 8PSK, MPSK, 8QAM, 
16QAM, and 64QAM. 
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A    The Theory of Higher-Order Cyclostationarity 

In this appendix we define the temporal and spectral moment and cumulant functions that 
form the basis of the theory of HOCS. Then we give a brief tutorial explanation of how cum- 
ulants arise as the solution to the problem of generating pure nth-order sine waves. Finally, 
we explain the signal-selectivity property that is unique to the cyclic temporal cumulants 
and their Fourier transforms, the cyclic polyspectra, and we illustrate the parameters using 
the example of digital QAM signals. 

For a time-series x(t) for —oo < t < oo, we define the nth-order lag-product time-series 
by 

Lx(t,T)n=    flxit + Tj), (4) 
3=1 

where T = [T\- • ■ rn]t and [-]t denotes matrix transposition. The cyclic temporal moment 
function (CTMF) of order n is defined by the limiting time average 

Ra
x(r)n   i\      lim 1 fT/2 Lx(t,r)ne-^

atdt = (Lx(t,r)ne-'2^) , (5) 
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which is simply the Fourier coefficient associated with the component et2vat in the time- 
series Lx(t, r)n. It can be seen that the CTMF is a Fourier coefficient of a moment function 
because the nth-order fraction-of-time probabilistic moment (the temporal moment function 

[TMF]) associated with the lag product Lx(t,r)n is given by 

Rx(t,r)n=  E^{Lx(t,T)n} 

where E& {•} = £oe{a} (CO6""™*) e'2™'> and can be expressed as [14, 15] 

a€{a} 

i2ivat 

(6) 

(7) 

where the sum is over all real numbers a, called nth-order cycle frequencies, for which 
Rx(r)n ^ 0. In (6), E^ {•} is the temporal expectation operation (or the sine-wave extrac- 

tion operation). The functions (5) and (6) exist and are well-behaved for appropriate mod- 
els of many time-series including amplitude modulated (AM), pulse-amplitude-modulated 
(PAM), phase-shift-keyed modulated (PSK), and digital quadrature AM (QAM) signals 

[10, 4], and others. 
The temporal cumulant function (TCF) of order n for the set of time-series translates 

{x(t + Tj)}™=1 is defined by 

kx(t, T)n —      2_^ 
P={xk}

P
k=1 

k(p)I[Rx{t,TVj)nj (8) 

which is completely analogous to its stochastic-process counterpart in [16]. The sum in (8) is 
over all distinct partitions Pn of the set of indices {1,2, • • •, n}, where each partition {^AJ/UI 

has p elements, 1 < p < n, and k(p) - (-l)p_1(jo - 1)!. The vector rVj is the vector of Uj 
lags with indices in the set Uj. 

The cyclic temporal cumulant function (CTCF) of order n is the Fourier coefficient of the 

TCF: 
C%{T)n=   (C,(t,T)ne-a**). (9) 

The set of real numbers {ß} for which C^{r)n ^ 0 is called the set of pure nth-order cycle 
frequencies, for reasons that will become clear subsequently. Combining (6)-(9) reveals that 
the CTCF is given by the following explicit function of lower-order CTMFs: 

Ci{T)n = E KP) E n^K)^ 
atl=/j V=i 

(10) 

where 1 = [1 • • • 1]*, and a = \a\ ■ ■ ■ ap]^. The CTCF was originally derived in [2] as the 
solution to the problem of removing from the Fourier coefficient R^{r)n all contributions 
from Fourier coefficients Rx3{TVj)nj of lower order. This is equivalent to removing from the 
finite-strength additive sine-wave component of frequency ß in the lag product time-series 
Lx(t, T)„ all contributions from products of sine-wave components in lag products Lx(t, TUJ )n. 
of lower order—whose frequencies sum to ß—that can be obtained by factoring Lx(t,T)n. 
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By using the relationship between moments and cumulants[21], the CTMF can be expressed 
in terms of CTCFs of order n and lower: 

K(T)n = E 
p 

E n^K)nj 
L/3tl=cJ=1 

(11) 

The CTMF and the CTCF are not in general integrable due to the presence of sinusoidal 
components in r. These components formally result in Dirac deltas in the n-dimensional Fou- 
rier transform of the CTCF. However, a reduced-dimension version of the CTCF is absolutely 
integrable for many time-series of interest and, therefore, it is strictly Fourier transformable 
[2]. The reduced-dimension CTCF (RD-CTCF) is simply the CTCF associated with the n 
variables {x(t + Tj)}]=1 with T„ = 0. The RD-CTCF is denoted by 

C%(u)n =  C^{r)n  for n = it,- and  rn = 0, (12) 

where u is (n—l)-dimensional vector [ui ••• un-i]- The (n—l)-dimensional Fourier transform 
of (12) is denoted by Pg(f)n: 

J—oo J—oo 
du, (13) 

where /' = [/i • • • fn-iV- 
The spectral moment, spectral cumulant, and cyclic polyspectrum are defined as follows. 

Consider the n complex-demodulate time-series Xj(t: fj) for j = 1, • • •, n, associated with 
narrow bandpass filtered versions of x(t), where 

rt+T/2 
XT(tJ)= / x(v)e-«"fvdv. 

Jt-T/2 
(14) 

The limit as T —> oo of the limiting time-average of the product of these spectral components 
is called the spectral moment function (SMF) of order n 

St(f)n±   llmi^JlXTitJj)^ 

and it can be shown that Dirac deltas can be factored out as follows: 

(15) 

(16) 

where S(-) is the Dirac delta function. However, the factor S"(f')n contains additional Dirac 
deltas for many signals and n > 2 (e.g., BPSK and n — A). 

The spectral cumulant function (SCF) of order n is given by 

W)n = E 
r={"x}U L       J=1 

*(P)II &(/,,)»; (17) 
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where fv. is the vector of rij frequencies with subscripts in the set Vj, and it follows from 
(16) that Dirac deltas can again be factored out: 

W)n = E^(/V(/fl-/?)- (18) 
ß 

Analogous to the definition of the cyclic spectrum (and power spectrum) in [14], the 
factor Pf{f)n is defined to be the cyclic polyspectrum (CP) and is given explicitly by 

PßMX =    £ 
P-i 

HP)    £    S?{f'Jnp'[[{S?(f'l,j)ni8{fl.l-aj)} (19) 

As first shown in [2], the CP is the (n - l)-dimensional Fourier transform of the RD-CTCF 
C%(u)n (cf. (13)). This is a generalization of the Wiener relation between the power spec- 
trum and autocorrelation from second-order stationary time-series (cf. [14]) to nth-order 
cyclostationary time-series. Within the stochastic-process framework of generally nonsta- 
tionary processes, it should be called the cyclic Shiryaev-Kolmogorov relation [16], which is 
the generalization of the Wiener-Khinchin relation (cf. [14]). Because the RD-CTCF can be 
absolutely integrable, the CP—unlike the SMF—contains no Dirac deltas. That is, all Dirac 
deltas present in the individual terms in (19) cancel. 

Let us now see how the cumulant arises as the solution to the problem of generating 
pure nth-order sine waves. For low orders n, it is easy to mathematically characterize a 
pure nth-order sine wave in a way that matches our intuition. For notational simplicity, 
we choose the case of no conjugated factors in (4). For n = 1, the moment sine waves 
(the sine-wave components of the polyperiodic TMF) are, by definition, pure lst-order sine 
waves. For n = 2, all products of lst-order moment sine waves can be subtracted from the 
2nd-order moment sine waves to obtain the pure 2nd-order sine waves, which are denoted 

by crx(i,ri,r2)2 , 

*x(t, n, r2)2     ±     £<<*> {x(t + n)x(t + r2)} - E^ {x(t + n)} £<<*> {x(t + r2)} 

=    Rx(t,r)2- Rx(t,n)1Rx(t,T2)i. 

There are several interesting points to be made concerning pure 2nd-order sine waves: 
(i) since Rx(t,Ti)i,i = 1,2, and Rx{t,r)2 are 1st- and 2nd-order moments respectively, then 
&x{t, Tii 7*2)2 is a temporal covariance function; (n) if Rx(t, r)i = 0, then there are no lower- 
order sine waves, and the 2nd-order moment sine waves are equal to the pure 2nd-order 
sine waves; (m) if the variables x(t + TJ) and x(t + T2) are statistically independent (in the 
temporal sense [14, 15]), then £» {x(t + n)x(t + r2)} = E^ {x(t + TX)} E^ {x{t + r2)} 
and therefore crx(t, TI^T^ = 0, that is, there is no pure 2nd-order sine wave for this particular 
pair of delays T\ and r2. This latter point shows that the set of pure cycle frequencies {ß} 
can be considerably different from the set of impure (moment) cycle frequencies {a}. 

The pure 3rd-order sine waves are obtained next. From the 3rd-order moment sine waves, 
we want to subtract each possible product of lower-order sine waves, but only once each. 
Thus, we subtract products of pure 2nd-order and pure lst-order sine waves from the 3rd- 
order moment sine waves, rather than subtracting products of 1st- and 2nd-order moment 
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sine waves: 

0x(t,T)3        =      E{a} I f[x(t + Tj) \  -<Tx(t,TUT2)2  (Tx(t,r3)l    ~ CTx{t, TU T3)2  (Tx(t, T2)l 

— <Tx{t,T2,Tz)2 Vx(t,Ti)i    -<7r(t,Ti)i  (Tx(t,T2)i  <Tx(t,T3)i  . 

Observe that there are no other possible products of pure lower-order sine waves. The terms 
in the sum of products that are subtracted can be enumerated by considering the distinct 
partitions of the index set {1,2,3}. A partition of a set G is a collection of p subsets of G, 
{vj}p

j=1, with the following properties: G = [fj=i "j and Vj[\vk = 0 for j ^ k. The set P3 

of distinct partitions of {1,2,3} is given by 

{1,2,3} 
{1,2}, {3}      {1,3}, {2}      {2,3}, {1} 

{1}, {2}, {3} . 

Thus, we can express the pure 3rd-order sine wave <Jx{t,r)3   as a sum over the elements of 

Pz: 
I P 

crx(t,r)3 = Rx(t,r)3-J2 

P = l 
p = 2 
p = 3 

na^(^r"j)nJ 
i=i 

(20) 

where TUJ is a subset of {TJ}|=1 with elements having indices in Vj, and Uj is the number of 
elements in Uj. Notice that, as in the case of n = 2, if the lst-order moment sine waves are 
zero, then the 3rd-order moment sine waves are equal to the pure 3rd-order sine waves. In 
this case, there are no products of lower-order sine waves to subtract from the moment sine 
waves. 

The formula for the pure nth-order sine waves is 

&x(t, i~)n  — Rx(t, r)n — 22 
Pn 

(21) 

where Pn is the set of distinct partitions of the index set {1,2, • • ■ ,n}. The pure-sine-waves 
formula (21) gives all the pure nth-order sine waves associated with the delay set r. A 
single pure ?zth-order sine wave with frequency ß can be selected by computing the Fourier 
coefficient: 

o£(r)„ e<2^ = (ax(u, r)B e-
a^^) , (22) 

and can be expressed in terms of pure lower-order sine waves by using the Fourier series for 
each <Jx(t,Tu.)nj   in (21): 

<rx(t,w)k  =J2^k(^)kei27Tßkt,       w = [w1---wk]\ (23) 
ßk 

where the sum is over all cycle frequencies ßk of order k. Thus, the strength of a single pure 
nth-order sine wave is given by 

ci(T)n = Rß
x(T)n - E 

Pn 
pjtl Vß=ß i=1 

(24) 
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where ß is the jt?-dimensional vector of pure cycle frequencies [ß\ ■ ■ ■ ß$ and 1 is the 
p-dimensional vector of ones. Hence, the pure-sine-wave strength <rf (r)„ is given by the 
CTMF Rß

x{r)n with all products of pure lower-order sine-wave strengths, for sine waves 
whose frequencies sum to ß, subtracted out. From (11), it is clear that the pure-sine-wave 

strength of (T)„ is identical to the CTCF Cß(r)n. 
Finally, let us see how the CTCF (and the CP) is signal selective. Let the signal x(t) 

consist of the sum of M mutually independent signals {ym(i)}m=n 

M 

*(*) = E y™(t)- (25) 
m=l 

Then the addition rule for cumulants [4, 17] can be used to show that the nth-order TCF 

for x(t) is the sum of TCFs for {ym(t)}, 

M 

Cx(t,T)n=ECym(tiT)n. (26) 
m=l 

Thus, the pure nth-order sine waves in the delay products of each ym(t) add to form the 
pure nth-order sine wave in the delay product of x(t): 

M 

Cß
x(r)n=Y.Cß

ym{r)n. (27) 
m=l 

The TMF does not in general obey this useful cumulative relation (27). That is, the nth-order 
TMF for x(t) is not the sum of nth-order TMFs for each ym(t): Rx(t, r)„ # £m=i Rym(t, r)n 

. An exception is the case of zero-mean signals and n < 3, for which moments and cumulants 
are equal, which is a commonly encountered case in HOS. 

To illustrate how (27) can be applied in practice, consider the situation in which {ym{t)} 
represent M interfering signals that overlap in time and frequency, but each ym(t) possesses 
some distinct nth-order cycle frequency, say ßm. Then it follows from (27) that 

Ct(r)n = Cß:(r)n,    m=l,2,---,M. (28) 

This indicates that the presence or absence of each of the signals ym(t) can be detected 
by measuring (estimating) the CTCFs of x(t) for the cycle frequencies {/?m}, and that 
parameters of each of the signals, on which these CTCFs depend, can be estimated. As 
illustrated in [14, 12, 13] for second order and in [4] for higher order, this signal-selectivity 
property can be exploited in numerous ways to accomplish noise-and-interference-tolerant 
signal detection and estimation. 

As another application, let M = 2, y\{t) be non-Gaussian, and 3/2 (0 De Gaussian. Then 
Cy2{t,r)n = 0 for n > 3 and, from (26), we have Cx(t,r)n = Cyi(i,r)n, n > 3, which 
indicates the detectability of y\(t) with no knowledge about t/2(^) except that it is Gaussian. 

As an example of the cyclic polyspectrum, we consider the class of digital QAM signals 
described by their complex envelopes, which can be expressed as x(t) = Y^,m=-oo am.p(t — 
mTo — Jo)) where p(t) is the complex pulse and {am} is the complex digital data. Assuming 
that {am} is an independent sequence, we have shown [10, 5, 11] that the CP for the set of 
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variables {x^*^(t + Tj)}"=1 (with r„ = 0), where (*)j denotes an optional conjugation of the 
jth variable, is given by 

W)n = ^P((-Uß - lf/'])W" I! Pini/j^e»***,     ß = k/T0,        (29) 
To i=i 

where (—)_,- is the optional minus sign corresponding to the optional conjugation (*)j, Ca,n 

is the cumulant of am, and 
/oo 

p(t)e-'2^dt. (30) 
-oo 

Thus, the CP is simply a scaled product of n pulse transforms. 

B    Cumulants of Rectangular-Pulse PAM Signals 

The maxima of the absolute value of the nth-order cyclic cumulants for PAM signals with 
full-duty-cycle rectangular pulses are derived in this appendix. 

For the signal model 
oo 

*(<)=   E  *jP(t + JTo + t0), (31) 
jrr-oo 

where 
m_fl,    1*1 < lb/2 

P[t) ~ \ 0,   |*| > To/2, {6"> 

and {a,j} is an independent, identically distributed symbol sequence, the nth-order cyclic 
temporal cumulant function (CTCF) is given by 

Cm      /-oo     n 

Ca
x{r)n = -%± If P(* + Tk)e-i2*at dt ei2*at°. (33) 

io   J-°°k=i 

Let *! equal the difference between the largest and smallest of the delay variables 

4       A I I *i =  max 7v — Tj\ 

if this number is less than T0 and equal to T0 otherwise. Then the product of the shifted 
rectangle functions in the integrand of (33) is itself equal to a rectangle with width T0 - *i. 
It is easy to evaluate the integral (33), differentiate the result with respect to *l5 set this 
derivative equal to zero and solve for *j. The result is 

\n"t   ^ l      lC^l    t    *       (2|fc|-2m-l)r0 . n        .,      1( m^x|C^(r)n| = —-j-    for *i = v '  J—,    m = 0,1, ■ • • \k - 1|. 
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